摘要
基于Modelica语言建立的仿真模型可以映射为一个微分代数方程系统。求解微分代数方程系统需要为其设定初始值。简要介绍了Modelica语言,讨论了Modelica模型初始条件的设定方式,给出了隐含约束的获取方法,以及初始条件的相容性判定方法和相容初始值求解策略。给出实例表明了方法的有效性。
Simulation model described by the Modelica language can be translated into a system of differential algebraic equations. It is necessary to provide some initial conditions before solving a DAE system. The Modelica language was briefly introduced, the way for specifying initial conditions for Modelica models was discussed, a method for obtaining the underlying constraints of a DAE system was proposed, the criterion for determining whether the initial conditions were consistent or not was given, and the strategy for solving the initialization equation system was proposed. The result achieved by applying the discussed method on an oscillator model was illustrated.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2007年第17期3930-3933,共4页
Journal of System Simulation
基金
国家"八六三"高技术研究发展计划(2003AA001031)
国家自然科学基金(60574053)
国家重点基础研究发展规划项目(2003CB716207)。
关键词
初始化
微分代数方程
仿真
多领域建模
MODELICA
initialization
differential algebraic equations
simulation
multi-domain modeling
Modelica