期刊文献+

奇异摄动滞时微分方程的一致收敛数值方法(英文) 被引量:2

Uniformly Convergent Numerical Methods for Singularly Perturbed Delay Differential Equations
下载PDF
导出
摘要 提出了求解线性奇异摄动滞时微分方程基于指数拟合技术的一致收敛和最佳一致收敛的数值方法,并证明了方法的一致收敛性。利用线性化的思想,并结合Newton-Raphson迭代,构造了求解非线性奇异摄动滞时微分方程相应的一致收敛的算法。数值例子验证上述理论结论的正确性。 Uniformly convergent and optimal uniformly convergent numerical schemes based on the exponential fitting technique were proposed for solving linear singular perturbation problems with afterffect. Corresponding uniformly convergent numerical schemes were constructed by linearization combined with Newton-Raphson iteration for nonlinear problems. Numerical examples were given to confirm the theoretical results.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3943-3944,3992,共3页 Journal of System Simulation
基金 NSF of China (10671130) E-Institutes of Shanghai Municipal Education Commission (E03004) Shanghai Science and Technology Commission (06JC14092) Dawn Project of Shanghai Education Commission, Shanghai Leading Academic Discipline Project (T0401) Science Foundation of Shanghai (No. 04JC14062)
关键词 奇异摄动 滞时微分方程 一致收敛 数值方法 singular perturbation delay differential equation uniform convergence numerical method.
  • 相关文献

参考文献6

  • 1SMITH D R. Singular Perturbation Theory [M]. Cambridge: Cambridge University Press, 1985.
  • 2DERSTINE M W, GIBBS H M, HOPF F A, et al. Bifurcation gap in a hybrid optical system [J]. Phys. Rev., A (S1050-2947), 1982, 26: 3720-3722.
  • 3MACKEY M C, GLASS L. Oscillation and chaos in physiological control systems [J]. Science (S0036-8075), 1977, 197: 287-289.
  • 4LONGTIN A, MILTON J. Complex oscillations in the human pupil light reflex with mixed and delayed feedback [J] Math. Biosci (S0025-5564), 1988, 90: 183-199.
  • 5TIAN H. Asymptotic expansion for the solution of singularly perturbed delay differential equations [J]. J. Math. Anal. Appl. (S0022-247X), 2003, 281: 678-696.
  • 6DOOLAN E P, MILLER J J H, SCHILDEERS W H A, Uniform numerical methods for problems with initial and boundary layers [M]. Dublin: Boole Press, 1980.

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部