摘要
研究一类受外界扰动非线性互联动态大系统的最优扰动抑制问题。根据有限时域二次型性能指标,提出了一种基于逐次逼近思想的大系统近似最优扰动抑制方法。利用该方法将由原系统得到的高阶耦合的非线性两点边值问题简化为一族解耦的线性两点边值问题序列。证明了该序列的解一致收敛于原非线性互联大系统的最优控制。通过截取最优控制序列的有限次逼近值,可以得到非线性互联大系统近似最优扰动抑制控制律。最后通过数值仿真表明了该方法的有效性。
The optimal disturbances rejection problem for nonlinear interconnected large-scale dynamic systems with external disturbances is considered. A successive approximation approach designing optimal controller is proposed with respect to the finite-domain quadratic performance indexes. By using the approach, a high order, coupling, nonlinear two-point boundary value (TPBV) problem is transformed to a linear decoupling TPBV problem sequence. The fact that the TPBV problem sequence uniformly converges to the optimal control for nonlinear interconnected large-scale systems is proved. An approximate optimal disturbances rejection control law is obtained by intercepting a finite iterative result of optimal control law sequence. Finally, simulation examples show the effectiveness of the presented approach.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2007年第8期1334-1338,共5页
Systems Engineering and Electronics
基金
国家自然科学基金(60574023)
山东省自然科学基金(Y2005G02)
青岛科技大学科研启动基金(60574023)资助课题
关键词
非线性大系统
扰动
最优控制
扰动抑制
nonlinear large-scale systems
disturbances
optimal control
disturbances rejection