期刊文献+

基于自组织LMBPNN的移动机器人路径规划器 被引量:1

Obstacles avoidance path planning method based SOM-LMBPNN for mobile robot
下载PDF
导出
摘要 提出一种自组织LMBP神经网络,并将之用于移动机器人免碰路径规划。该算法首先用基于距离传感器的底层局部路径规划器生成初始路径,然后用自组织神经网络将该路径进行样本数据分类,之后将自组织神经网络的权值作为LMBP的输出样本,移动机器人的起始点与目标点作为LMBP神经网络的输入样本进行学习。这样,不但解决了三层LMBP样本若庞大则增加存贮、运行成本,以及数据冗余问题,并且随着机器人对未知环境探索的增多,所构建的地图越趋丰满。仿真结果说明该方法很好效。 This paper presents a path-planning algorithm based on a self-organizing feature map-Levenberg-Marquardt Back propagation Neural Network(SOFM-LMBPNN) for a mobile robot with static obstacles environments.The algorithm generates a original path using a base path planner based on range sensors firstly,then classifies the path using a one-dimensional self-organizing feature map neural network,lastly trains the LMBPNN with the start configuration and goal configuration as the input samples and the weights of the SOMFNN as the output samples.This algorithm not only reduces the cost of the store and operation,but also solves the problem of the redundancy samples to some degree.The simulation experiments verify the efficiency of this algorithm.
作者 范红 黄洪琼
出处 《计算机工程与应用》 CSCD 北大核心 2007年第25期28-29,50,共3页 Computer Engineering and Applications
基金 上海市教委科技项目(No.05FZ25)。
关键词 自组织LMBP网络 免碰路径规划 移动机器人 SOM-LMBPNN obstacles avoidance path planning mobile robot
  • 相关文献

参考文献2

  • 1Hagan,M,T,等 著.Neural network design[M].北京:机械工业出版社,2002.
  • 2MATLAB6.5辅助神经网络分析与设计.

共引文献9

同被引文献17

  • 1樊长虹,陈卫东,席裕庚.未知环境下移动机器人安全路径规划的一种神经网络方法[J].自动化学报,2004,30(6):816-823. 被引量:11
  • 2CHAN-DOO Jeong. Testing neural network crash avoidance systems in mobile robot [ D ]. Cleveland PasadenaUSA: Case Western Reserve University, 2001 : 31-32.
  • 3KRIECHBAUM L K. Tools and algorithms for mobile robot navigation with uncertain localization [ D ]. USA : California Institute of Technology, 2006 : 44-46.
  • 4FAJEN BRETT R. A dynamical model of visually-guided steering, obstacle avoidance, and route selection [ J ]. International Journal of Computer Vision, 2003, 54 ( 1/2 ) : 13-34.
  • 5THONGCHAI S. Intelligent control and learning techniques for mobile robots [ D ]. Nashville, USA : Graduate School of Vanderbih University, 2001 : 35-37.
  • 6MUSTAFA S, KEMAL L, HALICI U. Multi-Agent system-based fuzzy controller design with genetic tuning for a mobile manipulator robot in the hand over task [ J ]. Journal of Intelligent and Robotic Systems, 2004, 39: 287- 306.
  • 7WAGNER O. A genetic algorithm based architecture for evolving type-2 fuzzy logic controller for real world autonomous mobile robots [ C ]//Proceedings of Fuzzy Systems Conference. London, 2007 : 1-6.
  • 8DUCKETT T. A genetic algorithm for simuhaneous location and mapping[C]//Proceedings of the 2003 IEEE International Conference on Robotics & Automation. Taibei, China, 2003 : 434-439.
  • 9ZHAO Yilin. Theoretical and experimental studies of mobile-robot navigation [ D ]. Detroit, USA: University of Michigan, 1991 : 21-23.
  • 10PFISTER Samuel T. Algorithm for mobile robot location and mapping, incorporating detailed noise modeling and muti-scale feature extraction[ D]. USA: California Institute of Technology, 2006: 16-17.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部