摘要
本文运用 Rosen 双度规引力理论讨论了多方状态方程的流体多层球.通过计算给出了在-∞<n<0和0<n<+∞范围(本文不考虑 n=1的恒压情况),k=(g/r)^(1/2)→1情况下双度规引力理论的 Emden 函数。找出了稳定平衡流体球的γ=1+1/n 上限 r_0。r_0 与经典理论的 r 稍有不同,这是由于理论不同而造成的。
In this paper,we will uss Rosen's bimetric gravitation theory to discuss the liguid—polytrop of equation of polytropic state.The Enden functions are given by numerical calculation in the cases -∞ <n<0、0<n<+∞ and the condition k=(g/r)^(1/)3→1.The upper limite r_o of r=1+1/n on the stability of the equilibrium liquid—sphere in determined There is a little difference between r_o and r_o of classical theory.The difference results from different theories.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
1989年第3期43-51,共9页
Journal of Northeast Normal University(Natural Science Edition)