期刊文献+

建立不等式的降维方法(Ⅱ)(英文) 被引量:1

The method of descending dimension for establishing inequalities (Ⅱ)
下载PDF
导出
摘要 使用降维法建立了一些著名不等式,包括关于方差平均不等式的一个猜想,王-王不等式以及其它.通过论证再次观察到,这种新近发展起来的方法可以广泛用于不等式研究,且有别于用在证明不等式的归纳法. The authors use the method of descending dimension to establish some well-dnown inequalities, including a conjecture for inequalities of the mean of difference, Wang-Wang inequality and others new inequalities. Via these arguments, we can once more observe that the newly developed method is widely used in studies of establishing inequalities. We can also observe that the method is constructed in a form somewhat differing from that of other techniques of induction used for proving inequalities.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期753-758,共6页 Journal of Sichuan University(Natural Science Edition)
基金 四川省教育厅自然科学基金
关键词 降维法 不等式 著名不等式 descending dimension method, inequality, famous inequalities
  • 相关文献

参考文献14

  • 1Alzer H.An inequality of W.L.Wang and P.F.Wang[J].Internat J Math & Math Sci,1990,13(2):295.
  • 2Wang W L,Wang P F.A class of inequalities for symmetric functions[J].Acta Math Sinica,1984,27 (4):485.
  • 3Chen J,Wang Z.Proof of an analytic inequagty[J].J Ninbo Univ,1992,5(2):12.
  • 4Alzer H.The inequality of Ky Fan and related results[J].Acta Appllcandae Mathmaticae,1995,38:305.
  • 5Dragomir S S.Some refinements of Ky Fan's inequality[J].J Math Anal,1992,163:317.
  • 6Bekenbach E F,Bellman R.Inequalities[M].Berlin:Springer-Verlag,1961.
  • 7Luo Z,Wen J J,Shi H N.A class of the geometric inequalities involving k-Brocard point[J].J Sichuan Univ:Nat Sci Ed,2002,39(6):971.6
  • 8Hu K.The improvements of basic inequalities and their applications[M].Nanchang:Jiangxi Univ Press,1998.
  • 9Neuman E,Sandor J.On the Ky Fan inequality and related inequauties[J].Math Inequal Appl,2002 5 (1):49.
  • 10Wang W L,Wu C J.Generalizations of Ky Fan's inequality[J].J Chengdu Univ Sci Tech,1980(1):5.

同被引文献7

  • 1文家金,罗钊,张日新,吕涛.含对称平均的不等式及其应用[J].四川大学学报(自然科学版),2005,42(6):1086-1095. 被引量:5
  • 2张小明 何灯.n-1元的最值压缩定理应用例举.不等式研究通讯,2009,16(3):322-326.
  • 3郑宁国 张小明.S-凸函数基本定理的变形与应用.不等式研究通讯,2006,13(4):396-406.
  • 4Bullen P S. Hand book of means and their inequalities [M]. Boston: kluwer Academic Publishers,2003.
  • 5Wen Jiajin, Cheng Suisun, Gao Chaobang. Optimal sublinear inequalities involving geometric and power means [J]. Mathematica Bohemica,2009,134(2) : 133 - 149.
  • 6张小明 郑宁国 席博彦.扩大S-凸函数基本定理使用范畴的一个定理.不等式研究通讯,2006,13(4):345-354.
  • 7文家金,罗钊.二重幂平均不等式的优化与机器实现[J].成都大学学报(自然科学版),2008,27(3):198-203. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部