期刊文献+

一种提高子孔径拼接测量精度的误差修正方法 被引量:1

An algorithm of error correcting for improving precision of stitching measure
下载PDF
导出
摘要 干涉拼接测量技术主要用于大口径光学器件的测量,由于其能够测量出被测表面的细节,也开始应用于非球面的测量.拼接测量面临的主要问题是拼接测量过程中的误差累积,如何消除拼接误差,尤其对非球面拼接测量的误差修正,是干涉拼接测量的技术关键.本文就拼接误差修正中难以解决的随机误差与高阶波像差问题进行了研究,在研究拼接测量中所引入的误差的基础上,建立了拼接测量的误差修正模型,并提出误差随机修正的方法,实现随机误差和高阶波像差修正.根据所建立的模型和误差修正方法,进行实验验证,实验结果表明,利用误差随机修正技术能够修正随机误差和高阶波像差,其拼接测量结果比传统的修正调整误差方法更接近于全孔径测量结果. Stitching interferometry technology is used for testing large aperture optical parts, because it can test the detail of the tested surface, and began to be used for testing aspheric surface. The basic question during in stitching testing is accumulation errors. Therefore, how to remove the stitching errors, especially on the aspheric surface testing, the errors correcting is the key technology. Aiming at the random errors and high rank wavefront aberration are difficult to be corrected. On the basis of studying the introducing errors during the stitching testing, we set up the errors correcting function, and present a method of random correcting errors. Basing on the function and the method of random correcting errors, we do the experiment to verify the test method. The result of experiment shows the stitching measure result using the technology of random correcting errors is more precise than traditional correcting adjust errors method' s, and is more approximate to the whole parts measure result.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期845-850,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 拼接测量 误差修正 误差随机修正 随机误差 高阶波像差 stitching measure, errors correcting, random correcting errors, random errors, high-rank wavefront aberration
  • 相关文献

参考文献5

二级参考文献22

  • 1张学军,张云峰,余景池,张忠玉.FSGJ-1非球面自动加工及在线检测系统[J].光学精密工程,1997,5(2):70-76. 被引量:20
  • 2The CODE V optical design program is developed by Optical Research Associates, www. opticalres, com.
  • 3J. Herrmann. Cross coupling and aliasing in modal wave-front estimation[J]. J. Opt. Soc. Am., 1981, 71(8): 989-992.
  • 4B. Tatian. Aberration balancing in rotationally symmetric lenses[J]. J. Opt. Soc. Am., 1974, 64(8): 1083-1091.
  • 5V. N. Mahanjan. Zernike annular polynomials for imaging systems with annular pupils[J]. J. Opt. Soc. Am., 1981,71(1): 75-85.
  • 6Richard Barakat. Optimum balance wave-front aberrations for radially symmetric amplitude distributions: generalizations of Zernike polynomials[J]. J. Opt. Soc. Am., 1980, 70(6):739-742.
  • 7R. G. Lyon, J. E. Dorband, J. M. Hollis. Hubble space telescope faint object camera calculated point-spread functions[J]. Appl. Opt., 1997, 36(8): 1752-1765.
  • 8S. R. Restaino, S. W. Teare, M. Divittorio et al.. Analysis of the naval observatory flagstaff station 1-m telescope using annular Zernike polynomials[J]. Opt. Engng., 2003, 42(9): 2491-2495.
  • 9J. H, Bruning, D. R, Herriot, J, E. Gallagher et al.. Digital wavefront measuring interferometer of testing optical surfaces and lenses[J]. Appl, Opt,, 1974, 13(11): 2693-2703.
  • 10M. Mauro, P. Luca. lnterferometric testing of annular apertures[C], Proc. SPIE, 1992, 1781:241-248.

共引文献30

同被引文献7

  • 1Szwaykowski P, Castonguay R. Measurements of as- pheric surfaees[J]. Proc SPIE, 2008, 7063 : 706317.
  • 2Lowman A E, Greivenka J E. Interferometer errors due to the presence of fringer[J]. ApplOpt, 1996, 35 (34) : 6826.
  • 3Liu D, Yang Y Y, Tian C. Non-null Interferometrie system for general aspherie test [J]. Proe SPIE, 2009, 7283: 728305.
  • 4Seong K, Greivenkamp J E. Surface figure measure- ment based on the transmitted wavefront with reverseraytracing[J]. Optical Engineering, 2008, 47(4): 043602.
  • 5Xie Z X, Wang K, Liu S J. Two-axis measurement system with large field of view based on line struc- tured light [J].Journal of Optoelectronics . Laser, 2009, 20(6): 762 (in Chinese).
  • 6王伟波,谭久彬.非球面非零位拼接测量的对准误差模型[J].光电子.激光,2010,21(2):240-244. 被引量:3
  • 7郭春凤,苏显渝,雷柏平,伍凡.非球面Ronchi检测的误差分析[J].四川大学学报(工程科学版),2011,43(4):149-153. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部