期刊文献+

遗传算法-偏最小二乘法用于卵巢癌血清蛋白质组数据的特征挑选 被引量:2

Genetic algorithm-partial least squares algorithm as the feature selection method for proteomics data of ovarian cancer
下载PDF
导出
摘要 统计学t检验结合引入的变量筛选方法——遗传算法-偏最小二乘法(GAPLS)对卵巢癌SELDI-TOF MS数据进行特征筛选,从15154个原始变量中筛选得到4个特征质荷比值,采用支持向量机(SVM)模型的留一法交叉验证结果为95.26%.结果表明这4个质荷比值具有重要的生物学意义,它们或许可以作为卵巢癌的生物标记物,同时GAPLS可以作为一种有效的蛋白质组数据的特征筛选方法. Statistics method of two-side t-test combined with a new feature selection method, genetic algorithm-partial least squares algorithm, are used in this paper for the feature extraction for SELDI-TOF MS ovarian cancer data. 4 m/z values are obtained from the original 15154 m/z values and the support vector machines (SVM) classifier works well based on these 4 m/z values. Both 3-fold cross validation and leave-one-out cross validation are used for checking the pattern's stability. The result of leave-one-out cross validation is 95.26 %. The results indicated that genetic algorithm-partial least squares algorithm is an efficient feature extraction method for proteomics data and potential ovarian cancer biomarkers may exist in the 4 m/z values selected in this paper.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期867-872,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(29877016)
关键词 特征筛选 遗传算法-偏最小二乘法 支持向量机 卵巢癌 蛋白质组 feature selection, genetic algorithm-partial least squares algorithm, support vector machines, ovarian cancer, proteomics
  • 相关文献

参考文献26

  • 1Wulfkuhle J D,Liotta L A,Petricoin E F.Proteomic applications for the early detection of cancer[J].Nat Rev Cancer,2003,3 (4):267.
  • 2Greenle R T,Hill-Harmon M B,Murray T,et al.Cancer statistics[J].CA-A Cancer Journal for Clinicians,2001,51(6):373.
  • 3Petricion E F,Ardekani A M,Hitt B A,et al.Use of proteomic patterns in serum to identify ovarian cancer[J].Lancet,2002,359 (6):572.
  • 4Rai A J,Zhang Z,Rosenzweig J,et al.Proteomic approaches to tumor marker discovery-identification of biomarkers for ovarian cancer[J].Arch Pathol Lab Med,2002,126(12):1518.
  • 5Petricoin E F,Ornsteiin D K,Paweletz C P,et al.Serum proteomic patterns for detection of prostate cancer[J].J Natl Cancer Ⅰ,2002,94(20):1576.
  • 6Adam B L,Vlahou A,Semmes O J,et al.Proteomic approaches to biomarker discovery in prostate and bladder cancers[J].Proteomics,2001,1(10):1264.
  • 7Vlahou A,Schellhammer P F,Mendrinos S,et al.Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine[J].Am J Pathol,2001,158(4):1491.
  • 8Li J N,Zhang Z,Rosenzweig J,et al.Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer[J].Clin Chem,2002,48(8):1296.
  • 9Sorace J M,Zhan M.A data review and re-assessment of ovarian cancer serum proteomic profiling[J].BMC Bioinformatics,2003,4:24.
  • 10Alexe G,Alexe S,Liotta L A,et al.Ovarian cancer detection by logical analysis of proteomic data[J].Proteomics,2004,4 (3):766.

二级参考文献18

  • 1朱尔一,王小如,邓志威,杨芃原,黄本立.多变量判别分析用于癌症诊断研究[J].高等学校化学学报,1993,14(5):621-624. 被引量:14
  • 2朱尔一,杨芃原,邓志威,黄本立.正交递归选择法及其应用[J].高等学校化学学报,1993,14(11):1518-1521. 被引量:6
  • 3李通化,张众杰,朱仲良,丁林,李光盛.用数值遗传算法计算配合物的稳定常数[J].高等学校化学学报,1995,16(3):354-358. 被引量:14
  • 4金文博 戴亚 横田拓 金平正.烟草化学[M].北京:清华大学出版社,2000.17-28.
  • 5Shao X G, Leung A K, Chau F T. Acc. Chem. Res., 2003, 36(4): 276~283.
  • 6Thomas E V, Haaland D M. Anal. Chem., 1990, 62(10): 1091~1099.
  • 7Geladi P, Kowalski B R. Anal. Chim. Acta, 1986, 185(1): 1~17.
  • 8Leardi R, Lupiáez G A. Chemometrics Intell. Lab. Syst., 1998, 41(1-2): 195~207.
  • 9Centner V, Massart D L, deNoord O E, deJong S, Vandeginste B M, Sterna C. Anal. Chem., 1996, 68(21): 3851~3858.
  • 10Forina M, Casolino C, Pizarro M C. J. Chemometrics, 1999, 13: 165~184.

共引文献63

同被引文献8

  • 1Smith R, Cokkinides V, Eyre H. American cancer society guidelines for the early detection of cancer [ J ]. CA Cancer J Clin, 2003, 53 (1), : 27 - 43.
  • 2Yu J S, Chen X W. Bayesian neural network approaches to ovarian cancer identification from high-resolution mass spectrometry data [J]. Bioinformatics,2005, 21(1) :487 - 494.
  • 3Dudoit J S, Fridlyand J, Speed T P. Comparison of discrimination methods for the classification of tumors using gene expression data [J]. Journal of the American Statistical Association, 2002,97(457) :77 - 87.
  • 4Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response [J]. PNAS, 2001,98(9) :5116- 5121.
  • 5Cui X, Churchill G A. Statistical tests for differential expression in cDNA microarray experiments [J]. Genome Biology, 2003,44 (4) :210- 218.
  • 6Yu J S, Onagello S, Fiedler R, et al. Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data [ J]. Bioinfor-matics, 2005,21(10) : 2200 - 2208.
  • 7孟范静,刘毅慧,王洪国,成金勇.SVM在基因微阵列癌症数据分类中的应用[J].计算机工程与应用,2007,43(34):246-248. 被引量:2
  • 8孟辉,洪文学.蛋白质组学质谱数据预处理技术综述[J].中国生物医学工程学报,2009,28(3):469-475. 被引量:9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部