期刊文献+

字符识别中支持向量机抑制噪声能力的分析 被引量:2

Analysis of resistance to noisy input of support vector machine in character recognition
下载PDF
导出
摘要 Vapnik等学者首先提出了实现统计学习理论中结构风险最小化原则的实用算法——支持向量机,成功地解决了模式分类问题。支持向量机是目前车牌识别领域常用的算法之一,但由于实际获取的车牌图像往往存在大量的噪声干扰,大大影响了识别率。因此着眼于研究支持向量机对含噪声图片的识别效果,以字符识别为例进行分析,并与BP神经网络算法作对比,实验证明支持向量机具有较好的抑制噪声能力。 Vapnik and his collaborators proposed a useful algorithm: support vector machine, which could implement the structural risk minimization principle in statistical learning theory. Support vector machine is a useful algorithm in the practical use of license plates recognition, But the real images oflicense plates usually contain lots ofnoisy disturbance factors, which greatly influence the recognition rate, So the resistance to noisy input of support vector machine in character recognition is found out. Character recognition is taken as an example to do this research, Furthermore, the support vector machine algorithm is compared with the back propagation neural network algorithm to see which one is the best, Finally, the conclusion could be safely reached that the support vector machine has a high accuracy rate when recognizing character images with noisy input.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第16期3963-3964,F0003,共3页 Computer Engineering and Design
基金 天津市科技发展计划基金项目(04310951R)
关键词 支持向量机 BP神经网络 识别率 噪声 字符识别 support vector machine neural network recognition rate noisy input character recognition
  • 相关文献

参考文献8

二级参考文献41

  • 1郑君里 杨行峻.人工神经网络[M].北京:高等教育出版社,1992..
  • 2[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 3[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 4[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 5[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 6[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 7[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 8[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 9[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.
  • 10[9]Suykens J A K, Vandewalle J. Least squares support vector machines [J]. Neural Processing Letters, 1999, 9(3): 293-300.

共引文献2565

同被引文献22

  • 1张猛,余仲秋,姚绍文.手写体数字识别中图像预处理的研究[J].微计算机信息,2006(06S):256-258. 被引量:30
  • 2Frogbrook Z L,Oliver M A.Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data[J].Soil Use and Management,2007,23 (1):40-51.
  • 3Bowers S A,Hanks R J.Reflection of radiant energy from soils[J].Soil Science,1965,100 (2):130-138.
  • 4Al-Abbas A H,Swain H H,Baumgardner M F.Relating organic matter and day content to the multispectral radiance of soil[J].Soil Science,1972,114:477-485.
  • 5Krishnan P,Alexander J D,Butler B J,et al.Reflectance technique for predicting soil organic-matter[J].Soil Science Society of America Journal,1980,44(6):1282-1285.
  • 6Krishnan P,Butler BJ,Hummel J.Close-range sensing of soil organic-matter[J].Transactions of the ASAE,1981,24(2):306-311.
  • 7Dalal R C,Henry R J.Simultaneous determination of moisture,organic carbon,and total nitrogen by nearinfrared reflectance sepctrophotometry[J].Soil Science Society of America Journal,1986,50:120-123.
  • 8Morra M J,Hall M H,Freeborn L L.Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy[J].Soil Science Society of America Journal,1991,55:288-291.
  • 9Ben-Dor E,Banin A.Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J].Soil Science Society of America Journal,1995,59:364-372.
  • 10Sndduth K A,Hummel J W.Portable,near-infrared spectrophotometer for rapid soil analysis[J].Transactions of tie ASAE,1993,36(1):185-193.

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部