期刊文献+

带有非局部条件积分微分包含的可控性 被引量:2

Controllability of Integrodifferential Inclusions with Nonlocal Conditions
原文传递
导出
摘要 研究了一类带有非局部条件积分微分包含的可控性,利用Kakutani不动点定理和Schauder不动点定理,我们给出了凸和非凸两种情形可控性的充分条件. We consider controllability problems of integrodifferential inclusion with nonlocal conditions. Using Kakutani's fixed pointed theorem and Schauder's fixed pointed theorem, we establish sufficient conditions for the controllability under convex and nonconvex orientor fields respectively.
作者 曲绍平
出处 《数学的实践与认识》 CSCD 北大核心 2007年第16期157-163,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10471049)
关键词 非局部条件 MILD解 积分微分包含 可控性 不动点 nonlocal conditions mild solutions integrodifferential inclusion controllabilityfixed pointed
  • 相关文献

参考文献8

  • 1Naito K. On the controllability for a nonlinear Volterra equation[J]. Nonlinear Anal,1992,18:99-108.
  • 2Berchohra M, Ntouyas S K. Controbility of second-order differential inclusion in Banach spaces with nonlocal conditions[J]. J Opt Theory Appl, 2000,107 : 559-571.
  • 3Han H K, Park J Y. Boundary controllability of differential equations with nonlocal condition[J].J Math Anal Appl.1999,230:241-250.
  • 4Li G, Xue X. Controllability of evolution inclusions with nonloeal eonditions[J]. Applied Mathematics and Computation, 2003.141: 375-384.
  • 5Aubin J P, Cellina A. Differential Inelusion[M]. Springer-Verlag, Berlin,1984.
  • 6Klein E. Thompson A. Theory of Correspendenees[M]. Wiley, New York, 1984.
  • 7Papageorgiou N S. Convergence theorems for Banach space valued integrable multifunction[J]. Int J Math Sci, 1987,10: 433-442.
  • 8Bressan A, Colombo G. Extersions and selections of maps with decomposable values[J]. Studia Math,1988,90: 69-85.

同被引文献13

  • 1李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报(中文版),2005,48(6):1089-1094. 被引量:66
  • 2Byszewski L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem[J]. J Math Anal Appl, 1991, 162: 494-505.
  • 3Byszewski L, Akca H. Existence of solutions of a semilinear functional differential evolution nonlocal problem[J]. Nonlinear Anal, 1998,34 : 66-72.
  • 4Liang J, Liu J, Xiao T. Nonlocal Cauchy problems governed by compact operator families[J]. Nonlinear Anal, 2004, 57: 183-189.
  • 5Fan Z, Dong Q, Li G. Semilinear differential equation with nonlocal conditions in Banach spaces [J]. Inter J Nonlinear Sci, 2006, 2(3): 131-139.
  • 6Banas J, Goebel K. Measure of Noncompactness in Banaeh Spaces[M]. New York: Dekker, 1980.
  • 7Bothe D. Multivalued perturbations of m-accretive differential inclusions[J].Isreal J Math, 1998, 108.. 109-138.
  • 8Heinz H P. On the behavior of measure of noneompactness with respect of differentiation and integration of vector valued funetions[J]. Nonlinear AnalTMA, 1983, 7: 1351-1371.
  • 9Martin R H. Nonlinear Operators and Differential Equations in Banaeh Spaces[M].New York: John Wiley, 1987.
  • 10刘琼,陈兰荪.害虫管理策略的数学模拟[J].数学的实践与认识,2009,39(15):141-148. 被引量:4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部