摘要
研究一类二阶非线性变时滞微分方程x″(t)+p(t)f(x(g(t)))=0的振动性,对振动因子p(t)可变符号的情况,通过两个引理,得出了方程振动的两个充分性定理.所得结论推广了二阶非线性变时滞微分方程当系数不变号时的振动性结论.
This paper studies the oscillation of one kind of second-order variable delay differential equation x"(t) + p(t)f(x(g(t))) = 0. By using two lemmas, we gain two sufficient conditions for the oscillation of all solutions of the equation with variable coefficient p(t). We generalize the oscillation results of second-order nonlinear differential equation and variable delay differential equation with invariable coefficient.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第16期184-187,共4页
Mathematics in Practice and Theory
基金
北京市教委科技基金资助项目(KM200610009004)
关键词
非线性
系数变号
变时滞
振动性
nonlinear
variable coefficient
variable delay
oscillation