期刊文献+

一类具变号系数的二阶非线性变时滞微分方程的振动性 被引量:2

Oscillation of a Kind of Second-order Nonlinear Variable Delay Differential Equation with Variable Coefficient
原文传递
导出
摘要 研究一类二阶非线性变时滞微分方程x″(t)+p(t)f(x(g(t)))=0的振动性,对振动因子p(t)可变符号的情况,通过两个引理,得出了方程振动的两个充分性定理.所得结论推广了二阶非线性变时滞微分方程当系数不变号时的振动性结论. This paper studies the oscillation of one kind of second-order variable delay differential equation x"(t) + p(t)f(x(g(t))) = 0. By using two lemmas, we gain two sufficient conditions for the oscillation of all solutions of the equation with variable coefficient p(t). We generalize the oscillation results of second-order nonlinear differential equation and variable delay differential equation with invariable coefficient.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第16期184-187,共4页 Mathematics in Practice and Theory
基金 北京市教委科技基金资助项目(KM200610009004)
关键词 非线性 系数变号 变时滞 振动性 nonlinear variable coefficient variable delay oscillation
  • 相关文献

参考文献6

二级参考文献8

  • 1傅希林,俞元洪.非线性中立型二阶时滞方程解的振动性[J].数学杂志,1993,13(2):175-181. 被引量:4
  • 2[1]Rogovchenko Y. V., Oscillation Criteria for Certain Nonlinear Differential Equations [J], J. Math. Anal.Appl., 1999, 229(2): 399-416.
  • 3[2]Hameclani G. G., Krenz G. S., Oscillation Criteria for Certain Second Order Differential Equations [J], J.Math. Anal. Appl., 1990, 149(1): 271-276.
  • 4[3]Grace S. R., Lalli B. S., An Oscillation Criterion for Certain Second Order Strongly Sublinear Differential Equations [J], J. Math. Anal. Appl., 1987, 123(2): 584-588.
  • 5[4]Philos Ch G., Oscillation Theorems for Linear Differential Equations of Second Order [J], Arch. Math.(Basel), 1989, 53(5): 482-492.
  • 6[5]Erbe L., Oscillation Criteria for Second Order Nonlinear Delay Equations [J], Canad Math. Bull., 1973,16(1): 49-56.
  • 7M. K. Grammatikopoulos,G. Ladas,A. Meimaridou. Oscillation and asymptotic behavior of second order neutral differential equations[J] 1987,Annali di Matematica Pura ed Applicata(1):29~40
  • 8俞元洪,傅希林.一类二阶中立型方程的振动准则[J].山东师范大学学报(自然科学版),1990,5(4):20-23. 被引量:11

共引文献57

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部