摘要
设Ω=[-πxπ,-πyπ],C(Ω)表示关于x,y均以2π为周期的连续函数空间.若f(x,y)∈C(Ω),取结点组为(xk,yl)=(2k+2n 1)π,(2l 2+m 1)πk=0,1,2,…,2n,l=0,1,2,…,2m,则我们获得一个二元三角插值多项式Cn,m(f;x,y)=M1N∑k=2n0∑l=2m0f(xk,yl).1+2∑nα=1cosα(x-xk)+2∑mβ=1cosβ(y-yl)+4∑nα=1∑mβ=1cosα(x-xk)cosβ(y-yl)其中M=2m+1,N=2n+1.为改进其收敛性,本文构造一个新的因子ρα,β,使得带有该因子ρα,β的二元三角插值多项式Ln,m(f;x,y)可以在全平面上一致地收敛到每个连续的f(x,y),且具有最佳逼近阶.
LetΩ=[-π≤x≤π,-π≤y≤π],and C(Ω) be the continuous function space of the periodic function with period 2π. if the function f(x,y) ∈ C(Ω), at nodes as follows: (xk,yl)=((2k+1)π/2n,(2l+1)π/2m)k=0,1,2,…,2n,l=0,1,2,…,2m;Therefore, we obtain a new double trigonometric interpolation polynomial Cn,m(f;x,y)=1/MN∑k=0^2n∑l=0^2mf(xk,yl)·1+2∑α=1^ncosα(x-xk)+2∑β=1^mcosβ(y-yl)+4∑α=1^n∑β=1^mcosα(x-xk)cosβ(y-yl) where M=2m+1,N=2n+1
We construct a summation factor ρα,β in order to improve its convergence order, such that the integral operator Ln,m(f;x,y) with the factor ρα,β convergence uniformly on total plane for any f(x,y) ∈ C(Ω), and has the best approximation order.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第16期188-194,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金项目(60673021)
北京市教委科技基金资助项目(KM200710009012)
关键词
二元三角插值多项式
一致收敛
最佳逼近阶
double trigomometric interpolation polynomial
converge uniform
the bestconvergence order