期刊文献+

具有Holling-TannerⅢ类功能反应干扰系统的全局稳定性 被引量:4

Global Stability of a Mutual Interference System with Functional Response of Holling-Tanner Type Ⅲ
下载PDF
导出
摘要 对具有Holling-Tanner类功能性反应的Leslie捕食与被捕食模型引入干扰常数,得到具有Holling-Tanner类功能性反应和干扰的非自治Leslie捕食系统,然后,先利用微分方程定性理论证明该系统在适当条件下是持久的,再利用泛函分析的Brouwer不动点定理和构造Lyapunov泛函的方法得到该系统正周期解存在且全局渐近稳定的充分条件. A class of non-autonomous mutual interference system with functional response of holling-tanner type Ⅲ is obtained with an interference constant being introduced to the Leslie pedeter and preyer model with functional response of holling-tanner type Ⅲ. It is proved by differential equation qualitative theory that the system is permanent under proper conditions. By Brouwer fixed point theory and constructing a suitable Lyapunov functional, the sufficient conditions are established for the global asymptotic stability of the periodic solution for the system.
作者 潘红卫
出处 《广西科学》 CAS 2007年第3期221-223,共3页 Guangxi Sciences
关键词 Holling-T annerⅢ类功能反应 持久性 周期解 全局稳定性 Holling-Tanner type Ⅲ , persistence, periodic solution,gobal stability
  • 相关文献

参考文献6

  • 1BUTLE G J,FREDMAN H I.Periodic solutions of a predator-prey system with periodic coefficients[J].Math Biosci,1981,55 (1):27-38.
  • 2HSU S B,HUANG T W.Global stability for a class of predator-prey systems[J].SIAMJ Appl Math,1995,55(3):763-783.
  • 3WANG Q,FAN M,WANG K.Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey systems with functional responses[J].Math Anal Appl,2003,278(2):443-471.
  • 4梁志清,陈兰荪.一类基于比例确定的Leslie系统正周期解的存在性[J].应用数学,2005,18(2):313-318. 被引量:10
  • 5高建国.基于比率的Holling-Tanner系统全局渐近稳定性[J].生物数学学报,2005,20(2):165-168. 被引量:25
  • 6HASSELL M F.Mutual interference between searching insect parasites[J].Anim Ecol,1971,40(2):473-486.

二级参考文献13

  • 1陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1985.75-102.
  • 2Leslie P H. Some further notes on the use of matrices in population mathematics[J]. Biometrika, 1948,35 ;213-245.
  • 3Hsu S B, Huang T W. Global stability for a class of predator-prey system[J]. SIAM. J. Appl. Math. ,1995,55(3):763-783.
  • 4Gaines R E,Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin:Springer-Verlag, 1977.
  • 5Xu Rui,Chen Lansun. Persistence and stability of two-species ratio-dependent prodator-prey system of delay in a two patch environment[J]. Comp. Math. Appl. , 2000,40 (4-5) : 577 - 588.
  • 6陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1985..
  • 7Leslie P H,Gower J C. The properties of a stochastic model for the predator-prey type of interaction between two species[J]. Biometrika, 1960,47 ; 219 -234.
  • 8Yang Kuang, Edoardo Beretta. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol, 1998, 36(4):389-406.
  • 9Rui Xu, Chaplain M A J, Lansun Chen. Global stability for a delayed ratio-dependent predator-prey system without dominating instantaneous negative feedbacks[J]. Communications on Applied Nonlinear Analysis,2001, 8(4):17-27.
  • 10Sze-Bi Hsu, Tzy-Wei Huang. Global stability for a class of predator-prey systems[J]. SIAM J Appl Math,1995, 55(3):763-783.

共引文献30

同被引文献27

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部