期刊文献+

半欧氏空间之间的无穷调和映射

Infinity Harmonic Maps Between Semi-Euclidean Spaces
下载PDF
导出
摘要 研究半欧氏空间之间的无穷调和映射,给出半欧氏空间之间的映射是无穷调和映射的方程式及一些构造无穷调和映射的方法,并对半欧氏空间到N il和Sol空间的线性无穷调和映射进行分类. The infinity harmonic maps between semi-Euclidean spaces are discussed. The intinity harmonic map equations for maps between Semi-Euclidean spaces and several methods to construct infinity harmonic maps including direct sum and complete lift constructions are derived. The linear infinity harmonic maps from a semi-Euclidean space into Sol and Nil spaces is classified.
作者 张嵘
出处 《广西科学》 CAS 2007年第3期227-232,235,共7页 Guangxi Sciences
关键词 无穷调和映射 半欧氏空间 直和 完全提升 infinity harmonic maps ,semi-Euclidean spaces, direct sum ,complete lift
  • 相关文献

参考文献5

二级参考文献26

  • 1[1]Fuglede B. Harmonic morphism between Riemannian manifold. Ann Inst Fourier (Grenoble), 1978, (28): 107~144.
  • 2[2]Ishihara T. A mapping of Riemannian manifolds which preserves harmonic function. J Math Kyoto Univ, 1979, (19):215~229.
  • 3[3]Baird P. Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. Res Notes in Math,Pitman, London, 1983, 87.
  • 4[4]Eells J,Lemaire L. A report on harmonic maps. Bull London MathSoc, 1978, (10): 1~68.
  • 5[5]Eells J, Lemaire L. Selected topics in harmonic maps.CMBS Regional Conference Series in Mathematics, Amer Math Soc, 1983.50
  • 6[6]Eells J, Lemaire L. Another report on harmonic maps. Bull London Math Soc, 1998, (20): 385~524.
  • 7[7]Parmar V K. Harmonic morphisms between semi-Riemannian manifolds. [Ph D Thesis] . University of Leeds, England, 1991.
  • 8[8]O'Neill B. Semi-Riemannian Geometry with applications to relativity. New York: Academic Press, 1983.
  • 9[9]Aobu R, Baird P, Borssard J. Polynomes conformes et morphisms harmoniques. Preprint, University of Brest, 1998.
  • 10[10]Baird P. Harmonic morphisms and circle 3- and 4-manifolds. Ann Inst Fourier (Grenoble), 1990, 40: 177~212.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部