期刊文献+

非线性约束优化的一个共轭投影梯度法及其全局收敛 被引量:3

A Conjugate Projection Gradient Algorithm with Global Convergence for Nonlinear Constrained Optimization
下载PDF
导出
摘要 针对非线性等式和不等式约束优化问题,结合罚函数法,提出一个共轭投影梯度法,并证明该方法的全局收敛性,给出有效的数值实验. A conjugate project gradient algorithm is presented to solve nonlinear equality and inequality constraints optimization by combining with the method of penalty function. Under some suitable conditions, the global convergence is obtained. Numerical experiment shows that the given method is efficient.
出处 《广西科学》 CAS 2007年第3期236-238,243,共4页 Guangxi Sciences
基金 国家自然科学基金项目(No.10501009)资助
关键词 约束优化 共轭投影梯度 全局收敛 罚函数法 constrained optimization, conjugate projection gradient, global convergence, method of penalty function
  • 相关文献

参考文献8

  • 1ROSEN J B.The gradient projection method for nonlinear programming,Part 1,Linear constraints[J].SIAM Journal on Applied Mathematics,1960,8:181-217.
  • 2简金宝,张可村.不等式约束最优化的一个具有强收敛性的强次可行方向法[J].西安交通大学学报,1999,33(8):88-91. 被引量:29
  • 3时贞军.一类全局收敛的共轭投影梯度法及其超线性收敛性[J].计算数学,1996,18(4):411-421. 被引量:18
  • 4朱志斌,张可村.一个新的共轭投影梯度算法及其超线性收敛性[J].应用数学学报,2004,27(1):149-161. 被引量:12
  • 5PAINIER E R,TITS A L.A superlinearly convergent feasible method for the solution of inequality constrained optimization problems[J].SIAM J Control and Opti,1987,25 (4):934-950.
  • 6JIAN J B,TANG C M.An SQP feasible descent algorithm for nonlinear inequality constrained optimization without strict complementarity[J].Computers and Mathematics with Applications,2005,49(2~3):223-238.
  • 7JIAN J B,ZHENG H Y,TANG C M,et al.A new superlinearly convergent norm-relaxed method of strong sub-feasible direction for inequality constrained optimization[J].Applied Mathematics and Computation,2006,182 (2):955-976.
  • 8JIAN J B,ZHENG H Y,HU Q J,et al.A new normrelaxed method of strongly sub-feasible direction for inequality constrained optimization[J].Applied Mathematics and Computation,2005,168 (1):1-28.

二级参考文献7

共引文献45

同被引文献23

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部