期刊文献+

一类(P,P+1)-图是平衡的充要条件 被引量:4

Necessary and sufficient condition for the class of (P,P+1)-graph to be balanced
下载PDF
导出
摘要 用新的分析方法,研究了一类(p,p+1)-图B[n,n;d]的平衡性问题,首先得到了B[n,n;d]的平衡指标集,进而给出了B[n,n;d]是平衡图的充要条件,得到了一些新的结果. We studied the balancedness of the class of (P, P + 1)-graph B[n, n; a] by using a new method,obtained the balance index set of B[n, n; d], then gave the necessary and sufficient condition for B[n, n; a] to be balanced. Some results are obtained in the process.
作者 温一慧
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期104-106,109,共4页 Journal of Lanzhou University(Natural Sciences)
基金 江苏省教育厅自然科学基金(O7KJD110189) 苏州科技学院科研基金 苏州科技学院重点学科基金.
关键词 平衡图 平衡指标集 友好顶点标号 充要条件 balance graph balance index set friendly vertex labeling necessary and sufficient condition
  • 相关文献

参考文献5

  • 1LEE S M,LIU A,TAN S K.On balanced graphs[J].Congressus Numerantium,1992,87:59-64.
  • 2SEOUD M A,ABDEL Maqsoud A E I.On cordial and balanced labelings of graphs[J].J Egyptian Math Soc,1999,7:127-135.
  • 3LEE S M,NG H K,WEN Yi-hui.On the edge-magic indices of (v,v+1)-graphs[J].Utilitas Mathematica,2007,72:97-110.
  • 4CHARTRAND G,LEE S M,ZHANG Ping.Uniformly cordial graphs[J].Discrete Mathematics,2006,306:726-737.
  • 5温一慧.关于弱边优美图的存在性[J].兰州大学学报(自然科学版),2005,41(5):131-133. 被引量:3

二级参考文献5

  • 1Lee S M, Ma P N, Linda Valdes. On the edge-graceful grids[J]. Congressus Numerantium,2002(154): 67-77.
  • 2Lee S M, Tong S M, Eric Seah. On the edge-graceful total graphs conjecture[J]. Congressus Numerantium, 1999(141): 37-48.
  • 3Shiu W C, Lam P C B, Cheng H L. Edgegracefulness of composition of paths with null graphs[J]. Discrete Math, 2002(253): 63-76.
  • 4Wilson S, Riskin A. Edge-graceful labelling of odd cycles and their products[J]. Bulletin of the ICA,1998(24): 57-64.
  • 5Lee S M, Wang Ling, Wen Yi Hui. On The edgemagic cubic graphs and multigraphs[J]. Congressus Numerantium, 2003(165): 145-160.

共引文献2

同被引文献23

  • 1CAHIT I, Cordial graphs a weaker version of graceful and harmonious graphs[J]. Ars Combin, 1987, 23: 201-207.
  • 2HOVAY M. A-cordial graphs[J]. Discrete Math, 1991, 93: 183-194.
  • 3LEE S M, SALEHI E. Friendly index sets of trees[J]. Congressus Numerantium, 2006, 178: 173-183.
  • 4LEE S M, HO Y S, NG H K. On friendly index sets of root-union of stars by cycles[J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2007, 62: 97-120.
  • 5CAIRNIE N, EDWARDS K. The computational complexity of cordial and equitable labeling[J]. Discrete Math, 2000, 216: 29-34.
  • 6LEE S M, LIU A. A construction of cordial graphs from smaller cordial graphs[J]. Ars Combin, 1991, 32: 209-214.
  • 7SEOUD M Am ABDEL MAQSOUD A E I. On cordial and balanced labelings of graphs[J]. J Egyptian Math Soc, 1999, 7: 127-135.
  • 8Cahit I. Cordial graphs:a weaker version of graceful and harmonious graphs[J]. Ars Combin, 1987,23:201-207.
  • 9Lee S M,Liu A,Tan S K. On balanced graphs[J]. Congr Numer, 1992,87:59-64.
  • 10Seoud M A ,Adbel Maqsoud A E I. On cordial and balanced labelings of graphs[J]. Egyptian Math Soc, 1999,7:127-135.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部