摘要
利用微分不等式理论研究了一类Volterra型积分微分方程非线性边值问题.在适当条件下构造出问题的上、下解,得出解的存在性和渐近估计.
Nonlinear boundary value problem for singularly perturbed integral differential equation of Volterra type by means of differential inequality theories was studied. The upper and lower solutions were constructed, and the existence and asymptotic estimates of the solution under suitable conditions were obtained.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第4期127-130,共4页
Journal of Lanzhou University(Natural Sciences)
基金
江苏省高校自然科学基础研究资助项目(10471039).
关键词
奇摄动
积分微分方程
非线性边值问题
解的渐近估计
singular perturbation
integral differential equation
nonlinear boundary value problem
asymptotic estimation of solution