期刊文献+

基于选择性集成的情感识别 被引量:2

Emotion recognition based on selective ensemble
下载PDF
导出
摘要 当前,情感识别已经成为情感计算中一个重要研究问题。传统的情感识别方法有人工神经网络(ANN)的情感识别、模糊集的情感识别、支持向量机的情感识别和隐马尔可夫模型(HMM)的情感识别等。将选择性集成的方法应用到情感识别中,该方法通过训练数据集的随机数抽取、训练,得到一批候选分类器,并通过差异性计算,挑选出大于平均差异性水平的分类器用来做最终情感识别。实验表明,该方法比传统的识别方法以及bagging集成方法的效果都好,能有效地提高情感识别的精度。 Emotion recognition is a key problem in affective computing. It is usually studied based on facial and audio information with methodologies, such as artificial neural network (ANN), fuzzy set, support vector machine (SVM), hidden Markov model (HMM), etc. A method of selective ensemble was used in emotion recognition; through the random extraction and training of the training data set, the classifiers whose diversities are over the av- erage level were chosen for recognition using difference calculation. Simulation results show that the method, which effectively promotes the accuracy of emotion recognition, is better than the method of single classifier and even the bagging.
出处 《重庆邮电大学学报(自然科学版)》 2007年第4期413-416,共4页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
关键词 情感计算 情感识别 支持向量机 集成学习 选择性集成 affective computing emotion recognition support vector machine ensemble learning selective ensemble
  • 相关文献

参考文献7

  • 1[1]PICARD R W.Affective Computing[M].Cambridge:MIT Press.1997.
  • 2[2]ZHOU Z H,WU J,TANG W.Ensembling neural networks:many could be better than all[J].Artificial Intelligence.2002,137(1-2):239-263.
  • 3[3]BROW G,WYATT J,HARRIS R,YAO X.Diversity Creation Methods:A Survey and Categorisation[J].Journal of Information Fusion.2005,1:1-28.
  • 4[4]SHIPP C A.Relationships between combination methods and measures of diversity in combining classifiers[J].Journal of Information Fusion.2002,3 (2):135-148.
  • 5[5]VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer,1999.
  • 6[6]KANADE T,CHON J F,TIAN Y.Comprehensive database for facial expression analysis[EB/OL].(2000-04-18)[2007-06-02].http://ieeexplore.ieee.org/ie15/6770/18088/00840611.pdf? arnumber =840611.
  • 7[7]Chinese LDC.CASIA 汉语情感语料库[EB/OL].[2007-06-02].http://www.Chinese LDC.org.

同被引文献27

  • 1刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 2隋雪,任延涛.面部表情识别的即时加工过程[J].心理学报,2007,39(1):64-70. 被引量:28
  • 3余伶俐,蔡自兴,陈明义.语音信号的情感特征分析与识别研究综述[J].电路与系统学报,2007,12(4):76-84. 被引量:27
  • 4LOH M P, WONG Ya-Pling, WONG Chee-Onn. Facial expression recognition for e-learning systems using Gabor wavelet & neutral network [ C ]// Proceedings of the Sixth International Confer- ence on Advanced Learning Technologies. Netherlands: IEEE Computer Society, 2006:523-525.
  • 5KOTSIA I, NIKOLA1DIS N, PITAS I. Fusion of geometrical and texture information for facial expression recognition [ EB/OL ]. (2006-04-13) [ 2010-03-01 ]. http://ieeexplore, ieee. org/xpls/ abs all.jsp? arnumber =4107113 .
  • 6ALEKSIC P S, KATSAGGELOS A K. Automatic facial expression recognition using facial animation parameters and nmhistream HMMs [J]. IEEE Transactions on Information Forensics and Security, 2006, 1(1) : 3-11.
  • 7PANDZIC I S, FORCHHEIMER R. MPEG4 Facial Animation: The Standard, Implementation And Applications L M ]. New York, NY, USA: ohn Wiley & Sons, Inc, 2003.
  • 8YANG Y, WANG G, CHEN P. Feature Selection in Audiovisual Emotional Recognition Based on Rough Set Theory [ J ]. Transactions on Rough Sets VII,2007 : 283-294.
  • 9KANADE T, CHON J, TIAN Y. Comprehensive database for facial expression analys [ EB/OL ]. ( 2000-03-20 ) [ 2010-03-02 ]. http://ieeexplore, ieee. org/xpls/absall. jsp? arnumber = 840611.
  • 10YONS M J. The Japanese Female Facial Expression (JAFFE) Database [ EB/OL]. (1998-12-20) [ 2010-02-27 ]. http ://www. ntis. atr. co. jp/N mlyons/jaffe, html.

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部