期刊文献+

基于RBFN的交互式图像检索方法 被引量:2

An Interactive Image Retrieval Approach RBFN-Based
下载PDF
导出
摘要 相关反馈技术是近年来图像检索中的重要研究方向,它有效地缩短了用户高层语义和图像底层视觉特征的差距,大大提高了系统的检索精度。文中从机器学习的角度出发,提出了一种基于RBFN的相关反馈算法。同时,为了方便用户对检索结果的标记,将模糊逻辑引入到图像检索中。即:用户对检索结果标记为相关图像、模糊相关图像和不相关图像,利用这些反馈信息动态地建立RBFN的结构,并进行检索,这个过程反复进行直到用户得到满意的结果。实验表明,这种方法在图像检索中具有更好的性能和更强的推广能力。 Recently, the relevance feedback technique has been one of the important research facts in CBIR. Because it has greatly reduced the gap between the high level notion and low level visual features, the retrieval results are better. In this paper, proposed a relevance feedback approach using a network of radial basis functions in the view of machine learning. Meanwhile, integrated the conception of fuzzy logic for user's convenience on labeling the retrieval results. That is, the results are classified into relevant images, fuzzy relevant images and non - relevant images by labeling. Then make use of this information to dynamically construct RBFN, and retrieval images. The process is done repeatedly until the user is satisfied. The experimental result shows that the algorithm has better performance and generalization ability and is able to fulfill the user's requirement.
作者 常小红 张明
出处 《计算机技术与发展》 2007年第9期31-34,共4页 Computer Technology and Development
基金 上海海事大学基金资助项目(2005079)
关键词 基于内容的图像检索 RBFN 机器学习 相关反馈 模糊相关 content - based image retrieval RBFN machine learning relevance feedback fuzzy relevance
  • 引文网络
  • 相关文献

参考文献7

  • 1Rui Yong,Huang T S,Mehrotra S.Content-based image retrieval with relevance feedback in MARS[C]//in Proc.IEEE Int Conf.Image Processing.Washington D.C.:[s.n.],1997:815-818.
  • 2Rui Yong,Huang T S,Ortega M,et al.Relevance feedback:a power tool in interactive oontent-based image retrieval[J].IEEE Transactions on Circuits and Systems for Video Technology,1998,8 (5):644-655.
  • 3Yap Kim-Hui,Wu Kui.Fuzzy relevance feedback in content -based image retrieval[C]//IEEE,ICICS-PCM.[s.l.]:[s.n.],2003:1595-1599.
  • 4Yap Kim-Hui,Wu Kui.Fuzzy relevance feedback in content-based image retrieval systems using radial basis function network[C]//IEEE.[s.l.]:[s.n.],2005.
  • 5Yap Kim-Hui,Wu Kui.A soft relevance framework in content-based image retrieval systems[J].IEEE transaction on circuits and systems for video technology,2005,15 (12):1557-1568.
  • 6Muneesawang P,Guan Ling.Interactive CBIR using RBFBASED relevance feedback for WT/VQ coded images[C]//IEEE,[s.l.]:[s.n.],2001:1641-1644.
  • 7Muneesawang P,Guan Ling.An interactive approach for CBIR using a network of radial basis functions[J].IEEE transactions on multimedia,2004,6(5):703-716.

同被引文献9

引证文献2

二级引证文献4

相关主题

;
使用帮助 返回顶部