期刊文献+

基于非线性滤波的移动机器人位姿估计 被引量:1

Pose State Estimate of Mobile Robots Based on Nonlinear Filters
下载PDF
导出
摘要 研究了基于扩展卡尔曼滤波和粒子滤波的移动机器人位姿估计。由于扩展卡尔曼滤波必须假定噪声服从高斯分布,若用于复杂非线性系统,其估计精度不甚理想。粒子滤波对噪声类型没有限制,正在成为非线性系统状态估计的有效近似方法。在不同噪声条件下,对基于粒子滤波和扩展卡尔曼滤波的移动机器人位姿估计问题进行了比较研究。仿真结果表明:粒子滤波能明显地改善移动机器人位姿估计的鲁棒性和精度。 The issue of pose state estimate of mobile robots based on extended Kalman filter (EKF) and particle filter is studied. Because EKF must assume that the noise is subject to Gaussian distribution, the estimate accuracy is not so good if it is used to estimate the state of complicated nonlinear system. Particles filter (PF) has no restriction to the noise type and it is an effective approximate method for the state estimate of nonlinear systems. Under various noise conditions, the comparative studies for the pose state estimate of mobile robots have been done based on EKF and PF, respectively. Simulation results show that particle filter effectively improves the robustness of the pose state estimate and localization precision of mobile robots.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第4期558-563,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金资助项目(60675043) 浙江省自然科学基金资助项目(Y104560) 杭州电子科技大学科研启动基金资助项目(KYS09150543)
关键词 移动机器人 位姿估计 扩展卡尔曼滤波 粒子滤波 非线性滤波 mobile robot pose state estimate extended Kalman filter particle filter nonlinear filter
  • 相关文献

参考文献12

  • 1Mourllion B,Gruyer D.Kalman filters predictive steps comparison for vehicle localization[A].International Conference on Intelligent Robots and Systems[C].Edmonton,Alberta,Canada:IEEE press,2005.565-571.
  • 2Smith R,Self M,Cheeseman P.Estimating uncertain spatial relationships in robotics[J].Autonomous Robot Vehicles,1990,5(4):167-193.
  • 3Dellaert F,Fox D.Monte Carlo localization for mobile robots[A].IEEE International Conference on Robotics & Automation[C].Detroit,Michigan:IEEE press,1999.1322-1329.
  • 4Ueda R,Fukase T,Kobayashi Y.Uniform Monte Carlo localization:Fast and robust self-localization method for mobile robots[A].IEEE Intemational Conference on Robotics & Automation[C].Washington,DC:IEEE press,2002.1353-1359.
  • 5Armesto L,Tomero J.SLAM based on Kalman filter for multi-rate fusion of laser and encoder measurements[A].International Conference on Intelligent Robots and Systems[C].Sendai,Japan:IEEE press,2004.1960-1865.
  • 6Blom H A P,Bloem E A.Particle filtering for stochastic hybrid systems[A].2004 IEEE/RSJ International Conference on Decision and Control[C].Atlantis,Paradise Island:IEEE press,2004.3221-3228.
  • 7厉茂海,洪炳熔.移动机器人的概率定位方法研究进展[J].机器人,2005,27(4):380-384. 被引量:15
  • 8胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 9胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 10康健,司锡才,芮国胜.基于贝叶斯原理的粒子滤波技术概述[J].现代雷达,2004,26(1):34-36. 被引量:31

二级参考文献38

  • 1[1]Y Bar-Shalom, X R Li. Estimation and Tracking: Principles,Techniques and Software.Artech House,Boston,MA,1993
  • 2[2]M.Pachter,P R Chandler.Universal Linearization Concept for Extended Kalman Filters.IEEE Trans.on Aerospace and Electronic Systems, 1993, 29(3): 946~961
  • 3[3]T L Song,J L Speyer.A Stochastic Analysis of a Modified Gain Extended Kalman Filter with Application to Estimation with Bearing-Only Measurements.IEEE Trans.on Automatic Control, 1985, 30(10):940~949
  • 4[4]D L Alspach, H W Sorenson. Nonlinear Bayesian Estimation Using Gaussian Sum Approximation.IEEE Trans.,1972, AC-17: 439~447
  • 5[5]J Carpenter,P Clifford,P Fearnhead. Improved Particle Filter for Nonlinear Problems.IEE proc.Radar,Sonar,Navig., 1999,146(1)
  • 6[6]B P Carlin,N G Polson,D S Stoffer.A Monte Carlo Approach to Nonnormal and Nonlinear State-space Modeling. JASA., 1992,87(418):493~500
  • 7[7]A Doucet,N Gordon,V Krishnamurthy. Particle Filters for State Estimation of Jump Markov Linear Systems.IEEE Trans.on Signal Processing, 2001, 49: 613~ 624
  • 8VERMA V, LANGFORD J, SIMMONS R. Non-parametric fault identification for space rovers [ C ]//Proc of the 6 th Int Symposium on Artificial Intelligence, Robotics and Automation in Space. [ s. l.]:[s.n. ] ,2001.
  • 9GORDON N, SALMOND D, EWING C. Bayesian state estimation for tracking and guidance using the bootstrap filter [ J ]. J of Guidance Control and Dynamics, 1995,18(6): 1434 - 1443.
  • 10RUBIN D. Comment on ' The calculation of posterior distributions by data augmentation' by TANNER M A WONG W H [ J ]. J of the American Statistical Association, 1987,82:543- 546.

共引文献394

同被引文献6

  • 1Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping (SLAM) : Part I [ J ]. IEEE Robotics and Automation Magazine, 2006,13(2) :99-110.
  • 2Durrant-Whyte H, Rye D, Nebot E. Localization of autonomous guided vehicles[ M ]. New York : Spfinger-Verlag, 1995:613-625.
  • 3Smith R C,Self M,Cheeseman P. Estimating uncertain spatial rela-tionships in robotics [ M ]. New York, Springer-Verlag, 1990.
  • 4Guivant J E,Nebot E M. Optimization of the simultaneous localiza-tion and map-building algorithm for real-time implementation[ J].IEEE Trans on Robotics and Automation,2001,17(3) :242-257.
  • 5Guivant J,Nebot E. Compressed filter for realtime implementationof simultaneous localization and map building [ C ]. Int Conf onField and Service Robots. 2001 :309-314.
  • 6Siadat A,Kaske A,Klausmann S,et al. An optimized segmentationmethod for a 2d laserscanner applied to mobile robot navigation[C].3rd IFAC Symp on Intelligent Components and Instrumentsfor Control Applications. 1997 : 153-158.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部