期刊文献+

基于正常轮廓更新的自适应异常检测方法 被引量:1

An Adaptive Anomaly Detection Method Based on Normal Profile Updating
下载PDF
导出
摘要 根据网络系统发生正常改变的基本特征,提出了确定网络系统正常改变的"三条件"计算方法,其计算结果可作为更新正常轮廓的依据。对正常轮廓的更新问题进行了深入探讨,提出了自适应异常检测的实现机制。并以网络流量分析为例,验证了在异常检测中应用这一方法的可行性。 According to the characteristics of legal change in Network,a three-premise computing approach is brought out to identify the legal change of protected Network.The problem of normal profile updating is discussed and the principle that designing an adaptive anomaly detection system is described.Using experiments on network traffic analysis,the feasibility of updating normal profile for anomaly detection system is validated.
作者 熊平
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2007年第9期842-845,共4页 Geomatics and Information Science of Wuhan University
基金 中南财经政法大学引进人才科研启动基金资助项目
关键词 异常检测 正常轮廓 规则更新 anomaly detection normal profile rules updating
  • 相关文献

参考文献1

二级参考文献9

  • 1Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415~425.
  • 2Weston J., Watkins C. Multi-class support vector machines. Department of Computer Science, Royal Holloway University of London Technical Report, SD-TR-98-04, 1998.
  • 3Kressel Ulrich. Pairwise classification and support vector machines. In: Schkopf B., Burges C.J.C., Smola A.J. eds. Advances in Kernel Methods--Support Vector Learning, Cambridge, MA: MIT Press, 1998, 255~268.
  • 4Platt J.C., Cristianini N., Shawe-Taylor J. Large margin DAG's for multiclass classification. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000, 12: 547~553.
  • 5Li Kun-Lun, Huang Hou-Kuan, Tian Sheng-Feng. A novel multi-class SVM classifier based on DDAG. In: Proceedings of IEEE ICMLC'02, Beijing, China, 2002, 3: 1203~1207.
  • 6Burges J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121~167.
  • 7Vapnik V. Statistical Learning Theory. New York: Springer Verlag, 1998.
  • 8Corts C., Vapnik V. Support vector networks. Machine Learning, 1995, 20(3): 273~297.
  • 9李昆仑,赵俊忠,黄厚宽,田盛丰.基于SVM技术的入侵检测[J].信息与控制,2003,32(6):495-499. 被引量:11

共引文献48

同被引文献7

  • 1何慧,张宏莉,张伟哲,方滨兴,胡铭曾,陈雷.一种基于相似度的DDoS攻击检测方法[J].通信学报,2004,25(7):176-184. 被引量:36
  • 2王丽娜,徐巍,刘铸.基于相似度聚类分析方法的异常入侵检测系统的模型及实现[J].小型微型计算机系统,2004,25(7):1333-1336. 被引量:16
  • 3JUNG Y K, REX E G. Automated anomaly detection using timevariant normal profiling[ C]//Proc of World Automation Congress. Budapest , Hungary:Institute of Electrical and Electronics Engineers Computer Society ,2006 : 1-4.
  • 4MAHMOOD H, SUSAN M B. Adaptive intrusion detection with data mining [ C ]//Proc of IEEE International Conference on Systems, Man and Cybemetics. Washington DC : Institute of Electrical and Electronics Engineers Ine, 2003: 3097-3103.
  • 5YU Zhi-xin, CHEN Jing-ran, ZHU Tian-qing. A novel adaptive intrusion detection system based on data mining[ C]//Proc of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou : Institute of Electrical and Electronics Engineers Computer Society, 2005: 2390-2395.
  • 6KALLE B, SIMIN N T. Adaptive real-time anomaly detection with incremental clustering [ J ]. Information Security Technical Report, 2007, 12(1) : 56-67.
  • 7HANJia-wei,MICHELINEK.数据挖掘[M].范明,孟小峰,译.北京:机械工业出版社,2003:232.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部