摘要
Kharitonov定理在复系数区间多项式下扩展形式指出,实部和虚部均在特定区间内任意取值的复系数区间多项式族是Hurwitz稳定的,当且仅当8个特定顶点多项式是Hurwitz稳定的。本文未采用复杂的Hermite-Biehler定理,基于著名的排零原理,对上述结果给出了一个新的简单的证明。
Kharitonov's theorem generalized to polynomials with complex coefficients reveals that the family of interval polynomials,in which real and imaginary parts of each coefficient vary in a given interval,are Hurwitz if and only if eight special,well-defined polynomials are Hurwitz.This paper gives a new simple proof of the theorem by using the classical zero exclusion principle without invoking the Hermite-Biehler theorem.
出处
《河南科技大学学报(自然科学版)》
CAS
2007年第5期90-93,共4页
Journal of Henan University of Science And Technology:Natural Science
基金
教育部科技重点项目(02039)
天津大学"面向21世纪教育振兴行动计划"项目