期刊文献+

复系数区间多项式Kharitonov定理的一个新证明

A New Proof to Kharitonov's Theorem of Interval Polynomials with Complex Coefficients
下载PDF
导出
摘要 Kharitonov定理在复系数区间多项式下扩展形式指出,实部和虚部均在特定区间内任意取值的复系数区间多项式族是Hurwitz稳定的,当且仅当8个特定顶点多项式是Hurwitz稳定的。本文未采用复杂的Hermite-Biehler定理,基于著名的排零原理,对上述结果给出了一个新的简单的证明。 Kharitonov's theorem generalized to polynomials with complex coefficients reveals that the family of interval polynomials,in which real and imaginary parts of each coefficient vary in a given interval,are Hurwitz if and only if eight special,well-defined polynomials are Hurwitz.This paper gives a new simple proof of the theorem by using the classical zero exclusion principle without invoking the Hermite-Biehler theorem.
出处 《河南科技大学学报(自然科学版)》 CAS 2007年第5期90-93,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 教育部科技重点项目(02039) 天津大学"面向21世纪教育振兴行动计划"项目
关键词 Kharitonov定理 复系数区间多项式 稳定性判据 Kharitonov's theorem Interval polynomials with complex coefficients Stability criterion
  • 相关文献

参考文献4

  • 1Kharitonov V L.On a Generalization of a Stability Criterion[J].Izv Akad Nauk Kazakh SSR Ser Fiz Mat,1978,1 (1):53 -57.
  • 2Bose N K,Shi Y Q.A Simple General Proof of Kharitonov's Generalized Stability Criterion[J].IEEE Trans Circuits Syst,1987,34:1233-1237.
  • 3Minnichelli R J,Anagnost J J,Desoer C A.An Elementary Proof of Kharitonov's Theorem with Extensions[J].IEEE Transactions on Automatic Control,1989,34 (9):995-998.
  • 4Keel L H,Bhattacharyya S P.Phase Properties of Hurwitz Polynomials[J].IEEE Transactions on Automatic Control,1996,41 (5):733-734.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部