期刊文献+

黏性不可压流体的自适应网格技术和基本特性方程分离算法的联合分析 被引量:1

Combined Adaptive Meshing Technique and Characteristic Based Split Algorithm for Viscous Incompressible Flow Analysis
下载PDF
导出
摘要 组合基本特性方程分离算法和自适应网格技术,分析二维黏性不可压流体.该方法使用3节点三角单元,对速度分量和压力等变量分析,使用等阶次的插值函数.组合解法的主要优点在于,在自适应网格技术中,对解梯度变化大的区域,通过耦合误差估计生成小的单元,利于提高解的精度,在其它区域生成大单元,可以节省时间.最后,通过对一个黏性流体圆柱体绕流问题的瞬态和稳态特性分析,给出了组合解法性能的评价. A combined characteristic-based split algorithm and an adaptive meshing technique for analyzing two-dimensional viscous incompressible flow is presented. The method uses the three-node triangular element with equal-order interpolation functions for all variables of the velocity components and pressure. The main advantage of the combined method is to improve solution accuracy by coupling an error estimation procedure to an adaptive meshing technique that generates small elements in regions with large change in solution gradients, and at the same time, larger elements in other regions. The performance of the combined procedure is evaluated by analyzing the three test cases of the flow past a cylinder, for their transient and steady-state flow behaviors.
出处 《应用数学和力学》 CSCD 北大核心 2007年第9期1037-1046,共10页 Applied Mathematics and Mechanics
基金 泰国国家基金资助项目
关键词 自适应网格 分离基本特性方程 有限元法 不可压流体 adaptive mesh caharcteristic-based split finite element method incompressible flow
  • 相关文献

参考文献16

  • 1Yamada Y,Ito K,Yokouchi Y,et al.Finite element analysis of steady fluid and metal flow[ J].Finite Elements in Fluids:Viscous Flow and Hydrodynamics,1974,1:73-94.
  • 2Kawahara M.Steady and unsteady finite element analysis of incompressible viscous fluid[ J].Finite Elements in Fluids,1974,3:23-54.
  • 3Kawahara M,Yoshimura N,Nakagawa K,et al.Steady and unsteady finite element analysis of incompressible visous fluid[J].International Journal for Numerical Methods in Engineering,1976,10:437-456.
  • 4Christie I,Griffths D F,Mitchell A R,et al.Finite element methods for second order differential equations with significant first derivative[ J].International Journal for Numerical Methods in Engineering,1976,10:1389-1396.
  • 5Heinrich J C,Huyakorn P S,Zienkiewicz O C,et al.An upwind finite element scheme for two-dimensional convective transport equation[ J ].International Journal for Numerical Methods in Engineering,1977,11:131-143.
  • 6Brooks A N,Heghes T J R.Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[ J].Computer Methods in Applied Mechanics and Engineering,1982,32:199-259.
  • 7Wansophark N,Dechaumphai P.Enhancement of streamline upwinding finite element solutions by adaptive meshing technique[J].JSME International Journal Ser B,Fluids and Thermal Engineering,2002,45:770-779.
  • 8Zienkiewicz O C,Codina,R.A General algorithm for compressible and incompressible flow-part Ⅰ:The split,characteristic-based scheme[ J].International Journal for Numerical Methods in Fluids,1995,20:869-885.
  • 9P.德乔姆凡,S.封查那帕尼,海治.用于高速可压缩流体分析的带多维耗散格式的自适应Delaunay三角剖分[J].应用数学和力学,2005,26(10):1216-1228. 被引量:3
  • 10Phongthanapanich S,Dechaumphai P.Evaluation of combined Delaunay triangulation and remeshing for finite element analysis of conductive heat transfer[J].Transactions of the Canadian Society for Mechanical Engineering,2004,27:319-340.

二级参考文献32

  • 1Anderson J D. Modern Compressible Flow With Historical Prospective [ M]. 2nd edition. New York: McGraw-Hill, 1990.
  • 2Donea J. A Taylor-Galerkin method for convective transport problems[ J]. Internat J Numer Methods in Engng, 1984,20( 1 ): 101-119.
  • 3Huges T J R. Recent Progress in the Development and Understanding of SUPG Methods With Special Reference to the C ompressible Euler and Navier-Stokes Methods in Fluids[M] .New York:John Wiley, 1987,1261-1275.
  • 4Jiang B N, Carey G F. A stable last-squares finite element method for non-linear hyperbolic problems[J]. Internat J Numer Methods in Fluids, 1988,8(9 ): 933-942.
  • 5Gnoffo P A. Application of program LUARA to three-dimensional AOTV flow fields[ R]. AIAA Paper 86-0565,1986.
  • 6Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes [ J]. J ComputPhys, 1981,43(2) :357-372.
  • 7Quirk J J. A contriibution to the great Riemann solver debate[ J]. Internat J Numer Methods in Fluids, 1994,18(6): 555-574.
  • 8Sanders R,Morano E, Druguet M C. Multidimensional dissipation for upwind schemes:stability and applications to gas dynamics [ J ]. J Comput Phys , 1998,145 ( 2 ): 511-537.
  • 9Bowyer A. Computing Dirichlet tessellations[J]. Comput J, 1981,24(2): 162-166.
  • 10Watson D F. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes[J]. Comput J, 1981,24(2): 167-172.

共引文献2

同被引文献1

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部