期刊文献+

一种改进的RS码代数软判决译码算法 被引量:1

Improved algebraic soft-decision decoding algorithm for Reed-Solomon codes
下载PDF
导出
摘要 为了提高Reed-Solomon码的纠错性能,分析并给出了能提高Reed-Solomon码纠错能力的代数软判决译码算法的译码流程,讨论了译码中需要的软信息的计算方法,推导了代数软判决译码算法的译码成功条件。在此基础上,提出了一种改进的代数软判决译码算法,并对改进算法的运算量和译码时延进行了分析。算法针对推导的译码成功条件,通过改变代数软判决译码算法中插值算法的选择输出准则,更有效地利用了接收端的软信息。仿真结果表明,在译码时延基本不变的条件下,提出的算法比代数软判决译码算法提供更多的译码增益。 To improve the error-correcting performance, the algebraic soft-decision decoding algorithm for Reed-Solomon code was discussed, the process of the algebraic soft-decision decoding algorithm and the method for calculating the soft information which is indispensable to the algorithm were given, and the successful decoding condition for algebraic soft-decision decoding algorithm was deduced. An improved algebraic soft-decision decoding algorithm for Reed-Solomon codes was proposed. Focusing on the deduced successful decoding condition, this algorithm changed the output rule of the interpolation algorithm in the algebraic soft-decision decoding algorithm. This algorithm can make use of the received soft bits information more adequately than the existing algorithm using symbol reliability information. The simulation re- suits show that the proposed algorithm can provide higher decoding gain over the algebraic soft-decision decoding algorithm with the approximately same decoding time.
出处 《解放军理工大学学报(自然科学版)》 EI 2007年第4期320-323,共4页 Journal of PLA University of Science and Technology(Natural Science Edition)
关键词 RS码 代数软判决译码 软信息 多项式插值 分解因式 Reed-Solomon codes algebraic soft-decision decoding soft information polynomial interpola- tion factorization
  • 相关文献

参考文献10

  • 1GURUSWAMI V,VARDY A.Maximum-likelihood decoding of reed-solomon codes is NP-hard[EB/OL].ECCC Report,http://eccc.hpi-web.de/eccc-reports/2004/Tr04-040/.2004.
  • 2FORNEY G D.Generalized minimum distance decoding[J].IEEE Transactions on Information Theory,1966,12(2):125-131.
  • 3CHASE D.A new class for decoding block codes with channel measurement information[J].IEEE Transactions on Information Theory,1972,18(1):170-182.
  • 4TANG H,LIU Y,FOSSORIER M P C,et al.On combining chase-2 and GMD decoding algorithm for nonbinary block codes[J].IEEE Communication Letter,2001,5(5):209-211.
  • 5GURUSWAMI V,SUDAN M.Improved decoding of Reed-Solomon and algebraic geometry codes[J].IEEE Transactions on Information Theory,1999,45(6):1757-1767.
  • 6KOETTER R,VARDER A.Algebraic soft-decision decoding of Reed-Solomon codes[J].IEEE Transactions on Information Theory,2003,49(11):2809-2825.
  • 7GROSS W J,KSCHISCHANG F R,KOETTER R,et al.Towards a VLSI architecture for interpolationbased soft-decision Reed-Solomon decoders[J].Journal of VLSI Signal Processing,2005,39(1-2):93-111.
  • 8GROSS W J,KSCHISCHANG F R,KOETTER R,et al.Applications of algebraic soft-decision decoding of Reed-Solomon codes[J].IEEE Transactions on Communications,2006,54(7):1224-1235.
  • 9KHAMY E,MCELIECE J.Iterative algebraic softdecision list decoding of Reed-Solomon codes[J].IEEE Journal on Selected Areas in Communications 2006,24(3):481-490.
  • 10ROTH M,RUCKENSTEIN R.Efficient decoding of Reed-Solomon codes beyond half the minimum distance[J].IEEE Transactions on Information Theory,2000,46(1):246-257.

同被引文献17

  • 1Huffman W C, Pless V. Fundamentals of Error-Correcting codes [M]. Cambridge, UK: Cambridge University Press, 2003. 573-580.
  • 2Forney G D. Generalized minimum distance decoding [J]. IEEE Trans. Inform Theory, 1966, 12(2): 125-131.
  • 3Chase D.A class of algorithms for decoding block codes with channel measurement information [J]. IEEE Trans. Inform. Theory, 1972, 18(1): 170-182.
  • 4Fossorier M, Lin S. Soft decision decoding of linear block codes based on ordered statistics [J]. IEEE Trans.Inform.Theory, 1995, 41(5):1379-1396.
  • 5Jing Jiang, Krishna R Narayanan. Iterative Soft-lnput Soft-Output Decoding of Reed-Solomon Codes by Adapting the Parity-Check Matrix [J]. IEEE Trans.lnform. Theory, 2006, 52(8): 3746-3756.
  • 6R Koetter, A Vardy. Algebraic soft-decision decoding of Reed-Solomon codes [J]. IEEE Trans. Inf. Theory, 2003, 49(11): 2809-2825.
  • 7Tang H, Liu Y, Fossrier M, et al. On combining chase-2 and GMD decoding algorithms for nonbinary block codes [J]. IEEE Commun.Lett., 2001, 5(5): 209-211.
  • 8Fossrier M,Valembois A. Reliability-based decoding of Reed-Solomon codes using their binary image [J]. IEEE Commun.Lett., 2004, 8(7): 452-454.
  • 9Hu T H, Lin S. An efficient hybrid decoding algorithm for Reed-Solomon codes based on bit reliability [J]. IEEE Trans. Commun., 2003, 51(7): 1073-1081.
  • 10Aditi Koyhiyal, Oscar Y Takeshita, Wenyi Jin, et al. Iterative reliability-based decoding of linear block codes with adaptive belief propagation [J]. IEEE Trans. Commun. Lett., 2005, 9(12): 1067-1069.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部