期刊文献+

二维对流反应扩散方程反问题的数值算法 被引量:2

Numerical Method of an Inverse Problem for Two-Dimensional Advection-Dispersion-Reaction Equations
下载PDF
导出
摘要 讨论了一类二维对流反应扩散方程反问题的数值解法。应用拟解法的思想,把原问题分解为一系列适定的正问题和一个不适定的线性代数方程组。对于相应的正问题,证明了解连续依赖于初始分布,由此得到了在t时刻的稳定性估计。用古典欧拉差分格式求解正问题,用截断奇异值分解法求解病态方程组。数值结果显示数值解与理论解吻合良好。 The numerical method for the inverse problem of second-dimensional advection-dispersion- reaction equations is discussed in the article. By means of idea of the Quasi-Solution the inverse problem is converted into a sequence of well-posed forward problems and an ill-posed system of algebraic equations. For the corresponding forward problem, it gives the continuous dependence of the solution on the initial data, from which a stability estimate on time is obtained. The classic difference scheme of Euler is employed to solve the forward problem, and the truncated singular value decomposition is used to solve the ill-conditioned system of algebraic equation. The numerical simulation manifests that the numerical solution approaches the theoretical solution very well.
出处 《浙江理工大学学报(自然科学版)》 2007年第5期577-582,共6页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金资助(10561001) 江西省自然科学基金资助(0511005)
关键词 对流反应扩散方程 反问题 拟解法 数值解 Advection-dispersion-reaction equations Inverse problem Quasi-solution method Numerical method
  • 相关文献

参考文献8

  • 1李功胜,谭永基,王孝勤.确定地下水污染强度的反问题方法[J].应用数学,2005,18(1):92-98. 被引量:7
  • 2[2]Alpay M E,Shor M H.Model-basee solution techniques for the source localization problem[J].IEEE Trans on Control Sys Tech,2000,8(6):895-904.
  • 3[3]Wei T,Hon Y.A meshless computational method for solving inverse heat conduction problem[J].International Series on Advances in Boundary Elements,2002,13(3):135-144.
  • 4[4]Hasanov A,Mueller L.Anumerical method for backward parabolic with non-selfadjoint elliptic operators.Elsevier[J].Applied Numerical Mathematics,2001,37(3):55-58.
  • 5[5]Denisov A M.Element of the Theory of Inverse Problem[M].Utrecht:VSP BV,1999.
  • 6[6]Elden L.Time discretization in the backward solution of parabolic equation[J].I,Math Comp,1982,39(6):53-68.
  • 7叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..
  • 8[12]林群.微分方程数值解法[M].北京:科学出版社,2000.

二级参考文献5

  • 1Alpay M E, Shor M H. Model-based solution techniques for the source localization problem[J]. IEEE Trans on Control Sys. Tech. , 2000,8 ( 6 ) : 895 - 904.
  • 2Mahar P S, Datta B. Optimal identification of groundwater pollution sources and parameter estimation[J]. J of Water Resources Planning and Management. 2001. 127 ( 1 ) : 20 - 29.
  • 3Sun N Z. Inverse problem in groundwater modeling[M]. Dordrecht: Kluwer, 1994.
  • 4Sun N Z. Mathematical model of groundwater pollution[M]. New York; Springer, 1996.
  • 5Cannon J R. The one-dimensional heat equationr[M]. London: Addison-Wesley, 1984.

共引文献16

同被引文献31

  • 1潘军峰 ,闵涛 ,周孝德 ,冯民权 .对流-扩散方程逆过程反问题的稳定性及数值求解[J].武汉大学学报(工学版),2005,38(1):10-13. 被引量:15
  • 2何杰,徐定华,张文.非线性抛物型方程反问题的一种新算法[J].东华理工学院学报,2007,30(2):196-200. 被引量:1
  • 3Ockendon J R, Howison S D, Lacey A A, et al. Applied Partial Diiferential Equations[M]. Revised Edition. Oxford. Oxford Unversity Press, 2003.
  • 4Ndayirinde I, Malfliet W. New special solutions of the brusselator reaction model[J]. Phys. A.. Math. Gen, 1997, 30: 5151--5157.
  • 5Ablowitz M J, Clarkson P S. Nonlinear Evolution and Inverse Seatting[M]. New York, Cambridge University Press, 1991.
  • 6Constantin P, Foias C, Nieolaenko B. Integral Manifolds and Inertial Manifolds for Dissipative PDEs[M]. New York: Springer-Verlag, 1989.
  • 7Marban J M, Palencia C. A new numerical method for backward parabolic problems in the maximum-norm setting[J]. SIAM J Numer Ana, 2002, 140: 1405--1420.
  • 8Quan P H, Trong D D. A nonlinearly backward heat problem: uniqueness, regularization and error estimate[J]. Applicable Analysis, 2006, 85(6/7): 641--657.
  • 9Mizoguehi N, Yanagida E. Critical exponents for the blow-up of solutions with sign changes in a semilinear parabolic equation[J]. Math Ann, 1997, 307: 663--675.
  • 10Moehizuki K, Suzuki R. Critical exponent and critical blow up for quasilinear parabolic equations[J]. Israel J Math, 1997, 98: 141--156.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部