摘要
讨论了一类二维对流反应扩散方程反问题的数值解法。应用拟解法的思想,把原问题分解为一系列适定的正问题和一个不适定的线性代数方程组。对于相应的正问题,证明了解连续依赖于初始分布,由此得到了在t时刻的稳定性估计。用古典欧拉差分格式求解正问题,用截断奇异值分解法求解病态方程组。数值结果显示数值解与理论解吻合良好。
The numerical method for the inverse problem of second-dimensional advection-dispersion- reaction equations is discussed in the article. By means of idea of the Quasi-Solution the inverse problem is converted into a sequence of well-posed forward problems and an ill-posed system of algebraic equations. For the corresponding forward problem, it gives the continuous dependence of the solution on the initial data, from which a stability estimate on time is obtained. The classic difference scheme of Euler is employed to solve the forward problem, and the truncated singular value decomposition is used to solve the ill-conditioned system of algebraic equation. The numerical simulation manifests that the numerical solution approaches the theoretical solution very well.
出处
《浙江理工大学学报(自然科学版)》
2007年第5期577-582,共6页
Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金
国家自然科学基金资助(10561001)
江西省自然科学基金资助(0511005)
关键词
对流反应扩散方程
反问题
拟解法
数值解
Advection-dispersion-reaction equations
Inverse problem
Quasi-solution method
Numerical method