期刊文献+

语义空间的研究方法 被引量:5

Research Methods in Semantic Space
下载PDF
导出
摘要 对于语义空间的研究一直是认知心理学研究的一个热点。由于对词汇语义系统的不同观点,科学家们试图从不同的角度采用不同的方法来进行研究。目前,有代表性的语义空间研究方法主要有两种:潜在语义分析(LSA)和语言的多维空间类比(HAL)。潜在语义分析是指利用奇异值分解的方法来探索文章中潜在的语义关系的方法;语言的多维空间类比则是利用多维量表(MDS)的方法来提取语义信息。 The research on semantic space has always been regarded as a hot area.Because of the different standpoints in this area, scientists try to adopt a variety of methods to study it. Currently, the most influential methods in semantic space are latent semantic analysis (LSA) and hyperspace analogue to language (HAL). LSA makes use of the singular value decomposition (SVD) and HAL resorts to multidimensional scaling (MDS) to investigate the semantic similarity relationship in a large corpus.
出处 《心理学探新》 CSSCI 北大核心 2007年第3期22-28,共7页 Psychological Exploration
基金 国家社会科学基金(04BYY008)
关键词 语义空间 潜在语义分析 语言的多维空间类比 semantic space latent semantic analysis hyperspace analogue to language
  • 相关文献

参考文献15

  • 1Deerwester S,Dumais S T,Furnas G W,et al..Indexing by latent semantic analysis.Journal of the American Society for Information Science,1990,(41):391-407.
  • 2Landauer T K,Dumais S T.A solution to Plato's problem:The latent semantic analysis theory of the acquisition,induction,and representation of knowledge.Psychological Review,1997,(104):211-240.
  • 3Landauer T K,Foltz P W,Laham D.An introduce to latent semantic analysis.Discourse Process,1998,(25):259-284.
  • 4Burgess C,Cottrell G.Symposium at the cognitive science society conference:using high-dimensional semantic spaces derived from large text corpora.In:Proceedings of the Cognitive Science Society.Hillsdale,NJ:Erlbaum Publishers,1995.13-14.
  • 5Lund K,Burgess C.Producing high-dimensional semantic spaces from lexical co-occurrence.Behavior Research Methods,Instrumentation,and Computers,1996,(28):203-208.
  • 6Burgess C.From simple associations to the building blocks of language:Modeling meaning in memory with the HAL model.Behavior Research Methods,Instruments,& Computers,1998,(30):188-198.
  • 7Rodhe D L T,Gonnerman L M,Plaut D C.An improved method for deriving word meaning from lexical co-occurrence.Cognitive Science,(in press).
  • 8Rehder B,Schreiner M E,Wolfe M B,et al..Using latent semantic analysis to assess knowledge:some technical considerations.Discourse Processes,1998,(25):337-354.
  • 9刘云峰,齐欢,代建民,王小平.中文信息的潜在语义分析[J].华南理工大学学报(自然科学版),2004,32(z1):107-111. 被引量:5
  • 10Burgess C,Lund K.The dynamics of meaning in memory.In:Conceptual and representational change in humans and machines.Lawrence Erlbaum Associates,2000.117-156.

二级参考文献6

  • 1[1]Deerwester Scott,Dumais Susan T,Furnas George W,et al. Indexing by latent semantic analysis [J]. Journal of the American Society for Information Science, 1990,41(6) :391 -407.
  • 2[2]Ding Chris H Q. A similarity-based probability model for latent semantic indexing [C]. In Proceedings of the 22nd Annual International ACM SIGIR conference [C].New York: ACM Press, 1999.59 - 65.
  • 3[3]Graesser Arthur C,Wiemer-Hastings Katja,Wiemer-Hastings Peter. Autotutor: A simulation of a human tutor [J]. Journal of Cognitive Systems Research, 1999 (1) :35-51.
  • 4[4]Dupret Georges. Latent concepts and the number orthogonal factors in latent semantic analysis [C]. Proceedings of the 26th Annual International ACM SIGIR Conference [C]. New York: ACM Press ,2003.221 - 226.
  • 5[5]Papadimitriou Christos H, Raghavan Prabhakar, Tamaki Hisao, et al. Latent semantic indexing: A probabilistic analysis [J]. Journal of Computer and System Sciences,2000,61 (2) :217 - 235.
  • 6[6]Golub G H,Van Loan C F. Matrix computations [M].2nd ed. Baltimore: John-Hopkins, 1986.56 - 60.

共引文献4

同被引文献58

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部