期刊文献+

具有模糊联盟值的n人合作博弈的模糊Shapley值 被引量:12

Fuzzy Shapley Value of n-Person Cooperative Games with Fuzzy Worth
下载PDF
导出
摘要 利用模糊集表现定理对具有模糊联盟值的n人合作博弈的模糊Shapley值重新进行研究.定义了具有模糊联盟值的n人合作博弈的α-博弈,并给出了其Shapley值定义及表达式.通过研究所有α-博弈的Shapley值之间的关系,验证了所有α-博弈的Shapley值构成一个集合套.利用模糊集表现定理和α-博弈Shapley值,定义了具有模糊联盟值的n人合作博弈的模糊Shapley值.实例研究表明,具有模糊联盟值的n人合作博弈的模糊Shapley值的有效性. The fuzzy Shapley value of n-person cooperative games with fuzzy worth is discussed employing the representation theorem of fuzzy set. The a-games and its Shapley value of n-person cooperative game with fuzzy worth are defined and the expression of the Shapley value is formulated. The relationship among the Shapley values of all a-games is analyzed, and it is proved that the Shapley values structure a nest of sets. The fuzzy Shapley value of n-person cooperative game with fuzzy worth is redefined by means of the Shapley value of α-games and the representation theorem of fuzzy set. The fuzzy Shapley value of n-person cooperative game with fuzzy worth is proved effective by examples.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2007年第8期740-744,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(70471063)
关键词 模糊合作博弈 模糊Shapley值 模糊数 cooperative fuzzy games fuzzy Shapley value fuzzy number
  • 相关文献

参考文献6

  • 1Aubin J P. Coeur et valuer des jeux flous a paiements lateraux [J]. Comptes Rendus de I' Aead Sci Paris, 1974, 279: 891- 894.
  • 2Nishizalzi I, Sakawa M. Fuzzy and multiobjective games for conflict resolution [M]. New York: A Springer-Verlag Company, 2001 : 121 - 190.
  • 3Sakawa M, Nishizaki I. A solution concept based on fuzzy decision in n-person cooperative games [C]// Proceedings of Cybernetics and Systems Research' 92. New Jersey USA: World Scientific Publishing, 1992 : 423 - 430.
  • 4Mares M. Fuzzy cooperative games-cooperation with vague expectations [ M ]. New York: Springer-Verlag Company, 2001 : 89 - 93.
  • 5黄礼健,吴祈宗,张强.联盟收益值为区间数的n人合作博弈的解[J].中国管理科学,2006,14(z1):140-143. 被引量:2
  • 6Young P. Monotonic solutions of cooperative games [J]. International Journal of Game Theory, 1985, 14 (2) : 65 - 72.

二级参考文献6

  • 1[4]Jaulin,I.,Kieffer,M.,Didfit,0.,and Walter,E.Applied interval analysis[M]London:Springer,2001:11-31.
  • 2[5]Petkovic,M.S.,and Petkovic,I..D.Complex interval arithmetic and its applications[M].Berlin:WIley-VCH,1998:15-26.
  • 3[6]Nishizaki,I.,and Sakawa M.Fuzzy cooperative games arising from linear production programming problem with fuzzy parameters[J].Fuzzy Sets and Systems,2000,114:11-21.
  • 4[7]Hart,S.,and Mas-colell,A.Cooperation;Game-Theoretic Approaches[C].Proceeding of the NATO Advance Study Institute on Cooperation:Game-Theoretic Approaches.Berlin:Springer-Vedag.1997:43-49.
  • 5[8]Young,P.Monotonic solutions of cooperative games[J].International Journal ot Game Theory,1985,14(2):65-72.
  • 6侯定丕.博弈论导论[M].合肥:中国科学技术大学出版社,2003.97-101.

共引文献1

同被引文献80

引证文献12

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部