期刊文献+

时间尺度上一阶微分方程的振动性与非振动性

Oscillation and Nonoscillation for First Order Differential Equation on Time Scales
下载PDF
导出
摘要 考虑时间尺度上具有不稳定项的方程xΔ(t)=p(t)x(τ(t))的振动性与非振动性,运用压缩映射原理,获得该方程有界正解与无界正解及振动解存在的充分和必要条件。这里p,τ∈Crd([t0,∞),R+),τ(t)≤t,limt→∞(τt)=∞. This paper studies the oscillation and nonoscillation of the equation with unstable type on time scales: x^△(t) -= p(t)x(r(t)) by Banach fixed point theorem, and obtains sufficient and necessary conditions of bounded positive solutions and unbounded positive solutions, where p, τ∈ Crd ([t0 ,∞),R^+) ,τ(t) ≤ t, and limτ t→∞(t) = ∞.
出处 《江南大学学报(自然科学版)》 CAS 2007年第4期491-493,共3页 Joural of Jiangnan University (Natural Science Edition) 
基金 湖南省教育厅科研项目(05C81)
关键词 时间尺度 不稳定项 振动 非振动 time scales unstable type oscillation nonoscillation
  • 相关文献

参考文献9

  • 1Erbe L H,Kong Q K,ZHANG B G.Oscillation Theory for Functional Differential Equations[M].Hong Kong:Marcel Dekker inc,1994.
  • 2ZHOU Yong,ZHANG B G.Oscillation for certain nonlinear functional equations[J].Nonlinear Studies,2000,1:57-65.
  • 3CHEN M P,Lalli B S.Oscillation in neutral delay difference equations with variable coefficients[J].Computers Math Applic,1995,29:5-11.
  • 4Hilger S.Analysis on measure chains a unified approach to continuous and discrete calculus[J].Results in Matematics,1990,18:18-56.
  • 5Hilger S.Differential and difference calculus-Unified[J].Nonlinear Analysis,1997,30(5):2683-2694.
  • 6Bohner M,Peterson A.Dynamic Equations on Time Scales An Introduction with Applications[M].Boston:Birkhauser,2001.
  • 7Bohner M,Castillo J E.Mimetic methods on measure chains[J].Comput Math Appl,2001,42:705-710.
  • 8Agarwal R P,Bohner M.Basic calculus on time scales and some of its applications[J].Results Math,1999,35:3-22.
  • 9刘兰初,周勇.一类时标非线性微分方程的振动性[J].广西师范大学学报(自然科学版),2005,23(4):46-48. 被引量:9

二级参考文献7

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部