摘要
研究了两种不同的神经元网络法,BP网络和LVQ网络,对北京谱仪(BES)实验中e,μ,π粒子的鉴别,取得了较常规方法要好的结果.用于训练和检验的μ子样本来自宇宙线事例,e和π粒子则是由真实实验数据精选的,虽然样本本身具有非均匀的动量谱,但BP网络的检验结果给出的粒子选择效率在整个动量区间却仍然具有相当均匀的分布,LVQ网络稍逊之.
Two different kinds of neural network methods,BP and LVQ ,are applied to the identification of e,μ,π particles in BES experiment ,and better results are obtained.The μ data samples used for training and tsets are from cosmic events,e and π are strictly selected from real experimental data by very tight cuts.Although their momentum spectrums are non uniform,interseting enough is that selection efficiencies given by BP tset results are quite uniform in the whole momentum range.The results from LVQ is little worse.It shows that BP is more powerful in pattern recognition than LVQ at least in this study.
出处
《高能物理与核物理》
EI
CSCD
北大核心
1997年第4期297-303,共7页
High Energy Physics and Nuclear Physics
基金
中国科学院高能物理研究所开放实验室和国家自然科学基金
关键词
BES实验
粒子鉴别
神经元网络法
谱仪
BES experiment,particle identification,neural network method.