摘要
该文首先对一维Mobius函数的一个性质作了证明,并定义了二维Mobius函数,给出其有关性质的证明。文中重点讨论了运用二维Mobius函数及二维序列的有限长傅里叶变换在单位双圆上的有限样值点,来计算无限长二维时域序列的逆Z变换的问题。并将二维双边序列的逆Z变换问题全部转化为第一象限问题来讨论,所得公式非常便于计算机实现。
This paper proves a characteristic of a 1D Mbius function, defines a 2D Mbius function and proves its characteristic . It emphasizes on computing inverse Z transform for 2D infinite length time domain series, that is by using 2D Mbius function and finite values of X(Z 1,Z 2) sampled in unit bicircle. These samples are just the finite length 2D discrete Fourier transform. All the problems of computing inverse Z transform for 2D infinite length series are transfered into quadrant 1 and discussed here. This method is convenient to computer calculation.
出处
《南京理工大学学报》
EI
CAS
CSCD
1997年第1期65-68,共4页
Journal of Nanjing University of Science and Technology