摘要
道路多项式Pk(λ)是上,下对角线元素是1,其它元素为0的k阶方阵的特征多项式,k≥1;记P0(λ)≡1。连通图的邻接矩阵是不可约的(0,1)一对称矩阵。这类矩阵的道路多项式的计算有重要的组合意义。图G的邻接矩阵记作A(G)。若对任何n,Pn(A(G))≥0,则称G是道路正图。该文给出了对任何k≥0,树Hn,n≥6的邻接矩阵A(Hn)的道路多项式Pk(A(Hn))的表达式。树Hn,n≥6,是道路正图。
The path polynomial P k(λ), k≥1, is the characteristic polynomial of the tridiagonal matrix with 1′s on the super and subdiagonals and zeros elsewhere; and P 0(λ)≡1. The adjacency matrix of a connected graph is any unreduced and symmetrical (0,1) matrix. It is of combinational significance to calculate their path polynomials. Denote the adjacency matrix of a graph G by A(G); if P n(A(G))≥0, for any n, then G is called path positive graph. In this paper, we completely describe the structure formulas of path polynomials of trees H n for and k≥0 and n≥6; by the way, the tree H n, n 6, is path positive.
出处
《南京理工大学学报》
EI
CAS
CSCD
1997年第1期73-77,共5页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金
关键词
特征多项式
连通图
树
邻接矩阵
道路多项式
irreducible matrices, characteristic polynomials, connected graphs,trees
adjacency matrix