期刊文献+

一种基于集合符号的自动推理扩展方法 被引量:4

An Automated Reasoning Expanded Method Based on Set Signs
下载PDF
导出
摘要 在多值逻辑Tableau推理的基础上,提出了一种基于集合符号的自动推理扩展方法.将符号集合作为真值,减少了Tableau的推理分枝,并可以将适合经典逻辑的推理方法和策略应用于其中,使得非经典逻辑推理经典化.使用SWI-PROLOG语言设计实现了基于集合符号的自动推理系统,在系统中使用集合符号方法,只需要在规则库中增加推理规则,即可生成规则程序,系统本身不需要任何的修改,因此一些适合于经典逻辑的推理方法和技巧就可以很容易地应用到多值逻辑、模态逻辑、直觉逻辑等非经典逻辑,也可以进一步推广到无穷值逻辑和含模糊量词(如T-算子和S-算子)的逻辑中,对于无穷值逻辑和模糊逻辑的Tableau方法研究具有一定的借鉴作用.对TPTP中的900个逻辑问题进行了证明,实验结果表明,系统在时间和空间上效率都是较高的. On the basis of the many-valued logics tableau reasoning, an automated reasoning expansion method based on set sign is presented. This approach which treats set signs as truth values can be applied to some methods and techniques of reasoning suited to classical logics, which make reasoning reform from the non-classical logics to the classical logics. Through rewriting set signs and expansion rules, it is very easy to spread to modal logics, intuitionistic logics and so on. The technology can also be further spread to infinitevalued logic and logic with fuzzy quantifiers(such as T-calculus and S-calculus and so on) . The theorem proving system-TSetTAP is implemented by using SWI-PROLOG language in microcomputer. Using method of set signs in the system, rule programming can be generated by only increasing reasoning rules in rule base. System need not be repaired. So some strategies and approaches used in classical logics can easily apply to non-clssical logic. 900 logic questions in TPTP are proved using the system. The result shows TSetTAP makes the tableau close early and improve greatly in time efficiency and space efficiency of reasoning.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第8期1317-1323,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60473003 60673092) 教育部科学技术研究重点基金项目(207040) 中国博士后科研基金项目(20060390919) 江苏省高校自然科学基金项目(06KJB520104) 江苏省博士后科研基金项目(060211C)
关键词 集合符号 自动推理 TABLEAU 经典逻辑 非经典逻辑 set sign automated reasoning tableau classical logic non-classical logic
  • 相关文献

参考文献14

  • 1L Bertossi,C Schwind.Analytic tableaux and database repairs[G].In:Foundations of Information and Knowledge Systems,LNCS 2284.Berlin:Springer,2002.
  • 2R Zabel.Proof theory of finity-valued logics:[Ph D disertation][D].TU Wien:Institut für Algebra und Diskrete Mathematic,1993.
  • 3R H(a)hnle.Complexity of many-valued logics[G].In:Beyond Two:Theory and Application of Many-Valued Logic.GmbH Hebh,Germany:Physica-Verlag,2003.211-233.
  • 4R H(a)hnle.Commodious axiomatization of quantifiers in many-values logic[J].Strudia Logical,1998,61(1):101-121.
  • 5M Baaz,R Zach.Integer programming in finite-valued logics[G].In:Logics in Artifical Intelligence,Proc of JELIA'2004,LNAI 3229.Berlin:Springer,2004.128-154.
  • 6B Beckert.A constraint method for multi-valued logics tableaux[C].The 10th Int'l Conf on Principles of Knowledge Representation and Reasoning (KR'06),Lake District,UK,2006.
  • 7A Paskevich.Connection tableaux with lazy paramodulation[C].IJCAR 2005,Seattle,USA,2005.
  • 8刘全,孙吉贵,于万钧.自由变量语义tableau中δ-规则的一种改进方法[J].计算机研究与发展,2004,41(7):1068-1073. 被引量:8
  • 9James Cook University.http://www.cs.jcu.edu.au/-tptp,2006.
  • 10M C Fitting.First-Order Logic and Automated Theorem Proving[M].New York:Springer-Verlag,1996.

二级参考文献13

  • 1程晓春,孙吉贵,刘叙华.基于广义归结的定理机器证明系统[J].软件学报,1995,6(7):425-428. 被引量:5
  • 2R M Smullyan.First-Order Logic.Revised 2nd ed.New York:Springer-Verlag,1994
  • 3M C Fitting.First-Order Logic and Automated Theorem Proving.New York:Springer-Verlag,1996
  • 4R Hhnle,P H Schmitt.The liberalized δ-rule in free variable semantic tableaux.Journal of Automated Reasoning,1994,13(2):211~221
  • 5M C Fitting.Types and Tableau.New York:Springer-Verlag,2000
  • 6A Voronkov.Herbrand's theorem,automated reasoning and semantic tableaux.In:Proc of the 13th IEEE Symp on Logic in Computer Science.Indianapolis,USA:IEEE Press,1998.252~263
  • 7B Beckert.Depth-first proof search without backtracking for free-variable clause tableaux.Journal of Symbolic Computation,2002,27(5):120~138
  • 8B Beckert,J Posegga.LeanTAP:Lean tableau-based deduction.Journal of Automated Reasoning,1995,15(3):339~358
  • 9Eisinger N,Oblbach H J.A Prachlein.Reduction Rules for Resolution Based Systems[J].Artificial Intelligence,1991,50(1):141-181.
  • 10Schmitt P H.The THOT Theorem Prover[R].Technical Report 87.9.7 IBM Germary,Scientific Center,Heidelberg,Germany,1987

共引文献7

同被引文献58

  • 1刘全,孙吉贵,崔志明.基于布尔剪枝的多值广义量词Tableau推理规则简化方法[J].计算机学报,2005,28(9):1514-1518. 被引量:5
  • 2沈晶,顾国昌,刘海波.分层强化学习研究综述[J].模式识别与人工智能,2005,18(5):574-581. 被引量:7
  • 3叶东毅.不相容决策表分解的若干性质[J].小型微型计算机系统,2006,27(4):695-697. 被引量:4
  • 4Sanner S, Boutilier C. Approximate linear programming for first order mdps [C] //The 21st Conf on Uncertainty in Artificial Intelligence. Amsterdam, Netherland: North Holland Publishing Company, 2005
  • 5Dabney W, Govern A M. Utile distinctions for reinforcement learning [C]//The 20th Int Joint Artificial Intelligence. Singapore: World Scientific P Company, 2007 relational Conf on ublishing
  • 6Croonenborghs T, Ramon J, Blockeel H, et al. Online learning and exploiting relational models in reinforcement learning [C] //The 20th Int Joint Conf on Artificial Intelligence. Singapore: World Scientific Publishing Company, 2007
  • 7Barto A, Mahadevan S. Recent advances in hierarchical reinforcement learning [J]. Discrete Event Dynamic Systems: Theory and Applications, 2003, 13(4):41-77
  • 8Tadepalli P, Givan R, Driessens K. Relational reinforcement learning: An overview [C]//ICML-04 Workshop on Relational RL. Boston: PWS Publishing Company, 2004
  • 9Sanner S. Simultaneous learning of structure and value in relational reinforcement learning [C]//ICML'05 Workshop on Rich Representations for Reinforcement Learning. San Francisco: Morgan Kaufmann, 2005
  • 10Landwehr N, Kersting K, de raedt L. nFOIL: Integrating naive Bayes and FOIL [J]. Journal of Machine Learning Research, 2007, 8(5): 481-507

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部