期刊文献+

研究两自由度强非线性振动系统的规范形方法 被引量:6

Study on the strongly nonlinear oscillation systems with two degrees of freedom by normal form method
下载PDF
导出
摘要 传统的规范形理论常用于研究弱非线性振动问题,对于非线性项不再是小量的强非线性振动系统则并不适用。为进一步拓展这一理论的适用范围,基于研究单自由度强非线振动问题的待定瞬时固有频率法,提出了可用来求解两自由度强非线性振动系统的改进规范形方法。首先引入了复数形式的一阶方程并且利用新的未知瞬态基频替换系统原有的固有频率,再依照规范形理论计算了一类两自由度强非线性Du ffing-V an der Po l振子的5阶传统规范形。最后求解平均方程获得了此类系统的瞬时频率、振幅以及相应的稳态渐近解。通过对比算例中本文方法、原有规范形理论及数值仿真的结果,证明了改进的规范形理论对于多自由度强非线性振动问题的适用性。 Conventional normal form theory is generally used to study the weakly nonlinear oscillation system, thus it confronts the limitation of dealing with the strongly nonlinear oscillation system, because the nonlinear terms aren' t small. To expand the validity of the normal form theory a refined normal form theory based on the approach of undecided instantaneous fundamental frequency method was applied to study strongly nonlinear system with two degrees of freedom in this paper. The first order equations were written in a complex form and the former fundamental frequencies were substituted by the new instantaneous fundamental frequencies, and then the conventional normal form of the strongly nonlinear Dulling-Van der Pol system up to the fifth order could be obtained. Finally the new introduced frequencies, amplitude of vibration, and relevant asymptotic solutions were computed by solving the average equations. The computation examples verified the validity of the refined theory in such multi-degrees of freedom which coincided very well with the solutions of numerical integration which demonstrated the adaptability of the proposed method for strongly nonlinear oscillation systems.
出处 《振动工程学报》 EI CSCD 北大核心 2007年第4期422-426,共5页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(10372068)
关键词 规范形 强非线性振动 两自由度 平均方程 渐近解 normal form strongly nonlinear oscillation two degrees of freedom average equation asymptotic solution
  • 相关文献

参考文献9

  • 1Sahasrabudhe,Vineet,Gold,Phillip J.Reducing rotor-body coupling using active control[A].Annual Forum Proceedings-American Helicopter Society,60th Annual Forum Proceedings[C].American Helicopter Society,United States:American Helicopter Society,Alexandria,2004:1818-1834.
  • 2G M Abd EL-Latif.On a problem of modified Lindstedt-Poincare for certain strongly oscillators[J].Applied Mathematics and Computation,2004,152(3):821-836.
  • 3Yang C H,Zhu S M,Chen S H.A modified elliptic Lindstedt-Poincare method for certain strongly nonlinear oscillator[J].Journal of Sound and Vibration,2004,273(4-5):921-932.
  • 4He Ji Huan.Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part Ⅱ:a new transformation[J].Non-linear Mechanics,2002,37(2):315-320.
  • 5Hu H,Tang J H.A convolution integral method for certain strongly nonlinear oscillations[J].Journal of Sound and Vibration,2005,285(4-5):1235-1241.
  • 6张琪昌,郝淑英,陈予恕.用范式理论研究强非线性振动问题[J].振动工程学报,2000,13(3):481-486. 被引量:8
  • 7Leung A Y T,Zhang Q C.Complex normal form for strongly non-linear vibration systems exemplified by Duffing-Van der Pol equation[J].Journal of Sound and Vibration,1998,213 (5):907-914.
  • 8Nayfeh A H.Method of Normal Forms[M].New York,John Wiley & Sons,1993.
  • 9陈予恕.非线性振动[M].天津:天津科学技术出版社,1982.70-116.

二级参考文献2

共引文献11

同被引文献45

  • 1宋鹏云,许恒杰.静压气体润滑机械密封刚度特性的解析法分析[J].排灌机械工程学报,2013,31(12):1077-1082. 被引量:6
  • 2陈予恕,孟泉.非线性转子-轴承系统的分叉[J].振动工程学报,1996,9(3):266-275. 被引量:66
  • 3成玫,孟光,荆建平.转子-轴承-密封系统的非线性振动特性[J].上海交通大学学报,2007,41(3):398-403. 被引量:11
  • 4Sahasrabudhe, Vineet, Gold, Phillip J. Reducing Rotor-body Coupling Using Active Control [ A]. Annual Forum Proceedings American Helicopter Society, 60th Annual Forum Proceedings [ C ]. American Helicopter Society, United Helicopter Society, Alexandria, States: American 2004:1 818-1 834.
  • 5G M Abd EL-Lati . On a Problem of Modified Lindstedt-poincare for Certain Strongly Oscillators [J]. Applied Mathematics and Computation, 2004, 152 (3) :821 -836.
  • 6Yang C H, Zhu S M, Chen S H. A Modified Elliptic Lindstedt-poincare Method for Certain Strongly Non-linear Oscillator [ J ]. Journal of Sound and Vibration, 2004, 273 (4-5) :921-932.
  • 7He Ji Huan. Modified Lindstedt-poincare Methods for Some Strongly Non-linear Oscillations Part II:a New Transformation[J]. Non-linear Mechanics, 2002, 37 (2) :315-320.
  • 8Hu H ,Tang H. A Convolution Interval Method for Strongy Nonlinear Oscillations [ J]. Journal of Sound and Vibration, 2005, 285 ( 4- 5) :1 235-1 241.
  • 9闻邦椿,李以衣.工程非线性振动[M].科学出版社,2006.
  • 10Nayfeh A H. Method of Normal Forms[M]. New York, John Wiley & Sons, 1993.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部