期刊文献+

支持向量机在原矿品位分析中的应用研究 被引量:1

Application of Support Vector Machine in Grade Analysis of Raw Ore
下载PDF
导出
摘要 原矿品位是矿山生产中非常重要的技术经济指标。探讨了支持向量机回归分析方法在原矿品位分析上的应用。以某金、铜多金属矿为研究对象,进行了实例计算,并取得了较好的效果。计算结果显示支持向量机回归的预测精度明显优于经典的一元线形回归。 The grade of raw ore is a very important technical and economical index for mining enterprises. In this paper, Support Vector Regression (SVR) is introduced for analyzing the grade of raw ore. The grades of an Au - Cu polymetallic ore are calculated, and good results, the results show that the prediction precision of SVR model is obviously better than that of classical one -variable linear regression analysis.
出处 《矿业研究与开发》 CAS 北大核心 2007年第4期37-38,56,共3页 Mining Research and Development
关键词 原矿 品位分析 支持向量机 回归分析 Raw ore, Grade analysis, Support vector ma- chine, Regression analysis
  • 相关文献

参考文献5

二级参考文献44

  • 1Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 2Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 3Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 4Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 5Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 6Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 7Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.
  • 8Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285.
  • 9Laskov P. Feasible direction decomposition algorithms for training support vector machines[J]. Machine Learning, 2002, 46(1): 315-349.
  • 10Collobert R. SVMTorch: support vector machines for large-scale regression problems[J]. Journal of Machine Learning Research, 2001, 1: 143-160.

共引文献158

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部