期刊文献+

随机市场系数条件下不连续股价的M-V投资组合选择 被引量:2

Mean-variance optimal portfolio selection with random parameters and discontinuous stock prices
下载PDF
导出
摘要 在假定市场系数为随机过程并且股票价格服从跳跃扩散过程的市场条件下应用鞅方法讨论一个M-V模型的最优投资组合选择问题.通过引进凹函数U(x)以及等价鞅测度,应用鞅方法以及贝叶斯定理得到了最优投资策略以及有效边界表达式. Under the assumption that market parameters are random and the prices of stock follow jump- diffusion process, this paper discusses M-V optimal portfolio selection problem with martingale method. By introducing a concave function U(x), an equivalent martingale measure, and applying martingale method and Bayes rule, we present the explicit forms of the optimal investment strategies and the efficient frontier.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2007年第3期263-269,共7页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(70573044) 江苏省高校自然科学基金(05KJB110033) 南京财经大学课程建设项目(YJS301027) 教改研究项目(JG2236176)
关键词 M-V模型 随机市场系数 跳跃-扩散 M-V model random parameter jump-diffusion martingale
  • 相关文献

参考文献9

  • 1Markowitz H.Portfolio selection[J].J Finance,1952,7:77-91.
  • 2Zhou X Y,Li D.Continuous-time mean-variance portfolio selection:a stochastic LQ framework[J].Appl Math Optim,2000,42:19-33.
  • 3Lim A,Zhou X Y.Mean-variance portfolio selection with random parameters in a complete market[J].Math Oper Res,2002,27(1):101-120.
  • 4郭文旌,胡奇英.随机市场系数的M-V最优投资组合选择:一个鞅方法[J].高校应用数学学报(A辑),2003,18(3):295-302. 被引量:4
  • 5Merton R C.Option pricing when underlying stock returns are discontinuous[J].J Financial Econ,1976,3:125-144.
  • 6Jeanblanc-Picqu M,Pontier M.Optimal portfolio for a small investor in a market model with discontinuous prices[J].Appl Math Optim,1990,22:287-310.
  • 7Guo W J,Xu C M.Optimal portfolio selection when stock prices follow an jump-diffusion process[J].Mathematical Methods of Operations Research,2004,60:485-496.
  • 8Karatzas,I,Shreve S.Brownian Motion and Stochastic Calculus[M],New York:Springer Verlag,1988.
  • 9Bremaud P.Point Process and Queues[M].New York:Springer -Verlag,1981.

二级参考文献8

  • 1Markowitz H. Portfolio selection[J]. J. Finance, 1952,7 : 77-91.
  • 2Markowitz H. Portfolio Selection: Efficient Diversification of Investment [M]. New York: Wiley,1959.
  • 3Merton R C. An analytic derivation of the efficient portfolio frontier[J]. J. Finance Quant. Anal. ,1972,7:1851-1872.
  • 4Li Duan, Ng Wan-Lung. Optimal dynamic portfolio selection., multiperiod mean-variance formulation[J]. Math. Finance,2000,10(3) :387-406.
  • 5Zhou Xunyu, Li Duan. Continuous-tlme mean-variance portfolio selection: a stochastic LQ framework[J]. Appl. Math. Optim. , 2000,42:19-33.
  • 6Karatzas I,Shreve S. Brownian Motion and Stochastic Calculus[M]. New York:Springer-Verlag,1988.
  • 7Li Duan,Chen Tsz-Fung,Ng Wan-Lung. Safety-first dynamic portfolio selection [J]. Dynamics of Continuous, Discrete and Impulsive Systems, 1998,4:585- 600.
  • 8Karatzas I,Shreve S. Method of Mathematical Finance[M]. New York :Springer-Verlag, 1998.

共引文献3

同被引文献13

  • 1郭文旌.跳跃扩散股价的最优投资组合选择[J].控制理论与应用,2005,22(2):171-176. 被引量:19
  • 2孙万贵.不完全市场中动态资产分配[J].应用数学学报,2006,29(1):166-174. 被引量:5
  • 3龚光鲁.随机微分方程引论(第二版)[M].北京:北京大学出版社,2000.
  • 4Markowitz H. Portfolio Selection[J]. Journal of Finance, 1952,(7).
  • 5Merton R. Optimum Consumption and Portfolio Rules in a Continuous-time Model[J].Journal of Economic Theory,1971,(3).
  • 6Merton R.Continuous Time Finance[M].Cambridge Basil Blackwell,1990.
  • 7Zhou X Y, Li D. Continuous-time Mean-variance Portfolio Selection:a Stochastic LQ Framework. Applied[J].Mathematics & Optimization,2000, (42).
  • 8Schweizer M. From Actuarial to Financial Valuation Principles[J]. Insurance: Mathematics & Economies,2001,(28).
  • 9Delbaen F, Schachermayer W. The Variance-optimal Martingale Measure for Continuous Processes[J].Bernoulli,1996,(2).
  • 10Schweizer M. Approximation Pricing and the Variance-optimal Martingale Measure[J].Annals of Probability,1996,(24).

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部