期刊文献+

混合位置分布中分量参数的统计推断 被引量:1

Statistical inference on component parameters in mixture location distribution
下载PDF
导出
摘要 对混合位置分布族,当混合比已知时,提出了关于分量参数的假设检验和区间估计方法,所提出的方法基于广义枢轴模型.在一定的条件下,检验的实际水平等于名义水平,且各置信域的实际覆盖率等于名义覆盖率.在更一般的场合,检验是相合的,并且各置信域的实际覆盖率趋于名义覆盖率.模拟显示所给的方法是令人满意的. The interval estimation and hypothesis testing of component parameters in mixture location distributions are discussed when mixing proportion is known. A method based on generalized pivotal model is proposed. For the situation in which the nuisance parameters are known, the true levels of the tests given in this paper are equal to nominal levels, and the true coverage of the interval estimation or confidence bounds are equal to nominal ones. In other situations, the tests are consistent, and the interval estimation or confidence bounds have asymptotic coverage equal to nominal coverage. Meanwhile, some simulations are given to show that these methods are satisfactory.
作者 刘芳 徐兴忠
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2007年第3期301-310,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10271013)
关键词 混合位置分布族 广义枢轴模型 信仰分布 信仰概率 渐近性质 mixture location distribution generalized pivotal model fiducial distribution fiducial probability asymptotic property
  • 相关文献

参考文献6

  • 1Lindsay B G.Mixture Models:Theory,Geometry and Applications,Volume 5,NSF-CBMS Regional Conference Series in Probability and Statistics[M].Alexandria,Virginia:Institute of Mathematical Statistics and the American Statistical Association,1995.
  • 2Mclanchlan G J,Peel D.Finite mixture models[M].New York:Wiley,2000.
  • 3Titterington P M,Smith A F M,Makov U E.Statistical Analysis of Finite Mixture Distribution[M].New York:Wiley,1985.
  • 4Michael G N.A finite mixture distribution model for data collected from twins[J].Twin Research,2003,6(3):235-239.
  • 5XU Xingzhong & LI Guoying Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China,Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China.Fiducial inference in the pivotal family of distributions[J].Science China Mathematics,2006,49(3):410-432. 被引量:17
  • 6Xu Xingzhong,Liu Fang.Statistical inference of mixing proportion[J].Science in China Series A,submitted.

二级参考文献32

  • 1[1]Fisher,R.A.,Inverse probability,Proc.Cambridge Philos.Soc.,1930,26:528-535.
  • 2[2]Fisher,R.A.,Contributions to mathematical statistics,New York:John Wiley & Sons,Inc.,1950.
  • 3[3]Fisher,R.A.,Statistical methods and scientific inference,London:Oliver and Boyd,1956.
  • 4[4]Fraser,D.A.S.,On fiducial inference,Ann.Math.Statist.,1961,32:661-671.
  • 5[5]Fraser,D.A.S.,The fiducial method and invariance,Biometrika,1961,48:261 280.
  • 6[6]Fraser,D.A.S.,The structure of inference,New York:Wiley,1968.
  • 7[7]Hora,R.B.,Buehler,R.J.,Fiducial theory and invariant estimation,Ann.Math.Statist.,1966,37:643-656.
  • 8[8]Hora,R.B.,Buehler,R.J.,Fiducial theory and invariant prediction,Ann.Math.Statist.,1967,38:795 801.
  • 9[9]Dawid,A.P.,Stone,M.,The functional model basis of fiducial inference,The Annals of Statistics,1982,10:1054-1067.
  • 10[10]Dawid,A.P.,Wang,J.,Fiducial prediction and semi-Bayesian inference,The Annals of Statistics,1993,21 1119-1138.

共引文献16

同被引文献6

  • 1XU Xingzhong & LI Guoying Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China,Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China.Fiducial inference in the pivotal family of distributions[J].Science China Mathematics,2006,49(3):410-432. 被引量:17
  • 2XU XingZhong,LIU Fang.Statistical inference on mixing proportion[J].Science China Mathematics,2008,51(9):1593-1608. 被引量:1
  • 3Lindsay, B G. Mixture Models: Theory, Geometry and Applications, Volume 5, NSF-CBMS Regional Conference Series in Probability and Statistics[M]. Alexandria, Virginia: Institute of Mathematical Statistics and the American Statistical Association, 1995.
  • 4Mclanchlan, G J, Peel, D. Finite mixture models[M]. Wiley, New York, 2000.
  • 5Titterington, P M, Smith, A F M, MaKov, U E. Statistical analysis of finite mixture distribution[M]. Wiley, New York, 1985.
  • 6Michael, G N. A finite mixture distribution modal for data collected from twins[J]. Twins Reseach, 2003,6(3), 235-239.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部