期刊文献+

解偏微分方程的多步-小波-Galerkin方法

A multi-step wavelet Galerkin method for partial differential equations
下载PDF
导出
摘要 推广Lax-Wendroff多步方法,建立一类新的显式和隐式相结合的多步格式,并以此为基础提出了一类显隐多步-小波-Galerkin方法,可以用来求解依赖时间的偏微分方程.不同于Taylor-Galerkin方法,文中的方案在提高时间离散精度时不包含任何新的高阶导数.由于引入了隐式部分,与传统的多步方法相比该方案有更好的稳定性,适合于求解非线性偏微分方程,理论分析和数值例子都说明了方法的有效性. A new explicit-implicit multi-step scheme by extending multi-step Lax-Wendroff scheme is constructed, and the concept of explicit-implicit multi-step wavelet Galerkin method which aims to solve time-dependent partial differential equations is introduced. Unlike in Taylor Galerkin methods, the presented scheme does not contain any new higher order derivatives, but improves the order of approximating accuracy in time. Comparing to conventional multi-step method, the scheme in the paper has better stability which makes it suitable for solving linear and non-linear partial differential equations. Theoretical analysis and numerical results illustrate the versatility and effectiveness of the proposed scheme.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2007年第3期332-342,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10371135)
关键词 多步方法 小波-Galerkn 热传导方程 非线性Burgers方程 multi-step scheme wavelet-Galerkin heat conduction equation non-linear Burgers equation
  • 相关文献

参考文献13

  • 1Beylkin G,Keiser J M,Vozovoi L.A new class of time discretization schemes for the solution of nonlinear PDEs[J].J Comput Phys,1998,147:362-387.
  • 2Cockburn B,Shu C.The local discontinuous Galerkin method for time-depended convectiondiffusion systems[J].SIAM J Numer Anal,1998,35(6):2440-2463.
  • 3Alpert B,Beylkin G,Gines D,et al.Adaptive solution of partial differential equations in multiwavelet bases[J].J Comput Phys,2002,182:149-190.
  • 4Qian S,Weiss J.Wavelets and the numerical solution of partial differential equations[J].J Comput Phys,1993,106:155-175.
  • 5Restrepo J M,Leaf G K.Wavelet-Galerkin discretization of hyperbolic equation[J].J Comput Phys,1995,122:118-128.
  • 6Donea J.A Taylor-Galerkin method for convective transport problem[J].Internat J Numer Methods Engrg,1984,20:101-119.
  • 7Rathish Kumar B V,Mani Methra.Time-accurate solution of Korteweg-de Vries equation using wavelet Galerkin method[J].Appl Math Comput,2005,162:447-460.
  • 8Jiang C B,Kawahara M.The analysis of unsteady incompressible flows by a three-step finite element method[J].Internat J Numer Methods Fluids,1993,16:793-811.
  • 9Meyer Y.Ondeletttes sur 1'intervalle[J].Revista Mathwmatic Iberoamericana,1991,7(2):115-133.
  • 10Daubechies I.Ten Lectures on Wavelets[M].Regional Conference Series in Applied Mathematics,Phliadelpha,SIAM,1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部