摘要
对一类具有散度形式的拟线性椭圆型微分方程建立了若干新的振动准则,所得结果仅依赖于方程在外区域Ω(?)R^n的一个区域序列的信息而有别于已知的大多数结论.
In this paper, some new oscillation criteria are obtained for quasilinear elliptic differential equations of the form
div(|Du|^p-2A(x)Du) + c(x)|u|^p-2u = 0,x ∈Ω belong R^n,
where Ω is an exterior domain in R^n and p 〉 1. These criteria are only based on the information of a sequence of subdomain of Ω belong R^n and different from most known ones.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2007年第3期355-362,共8页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(10571184
10571183)
关键词
拟线性椭圆型微分方程
Riccait不等式
积分平均方法
振动性
quasilinear elliptic differential equation
oscillation
domain criteria
integral averaging technique
Riccati inequality