期刊文献+

纳米碳管/氧化锌异质结构的合成及发光性质 被引量:3

Synthesis and photoluminescence properties of CNT/ZnO heterostructures
下载PDF
导出
摘要 以纳米碳管(CNTs)为基体、铜为催化剂,采用催化碳热还原方法直接合成出具有异质结构的纳米碳管/氧化锌(CNT/ZnO)复合材料。利用扫描电镜、透射电镜及X射线衍射等手段研究了异质结构CNT/ZnO复合材料的形态和结构。发现氧化锌纳米线在纳米碳管表面的生长过程遵循催化剂诱导的汽-液-固(VLS)机制;氧化锌纳米线与铜催化剂和纳米碳管之间分别存在明显的界面,并且氧化锌纳米线与纳米碳管均保持了规整的晶体结构。同时也发现在大直径纳米碳管上易于形成高密的氧化锌纳米线;随沉积温度的升高ZnO的形态由线到棒最后形成颗粒。异质结构CNT/ZnO复合材料的诱导发光性能不同于氧化锌纳米线和纳米碳管,在蓝光区域的发光强度远大于紫外发光强度。 Carbon nanotubes (CNTs) have been regarded as one of the ideal substrates for making functional nano- and micro-structures. In the present study, CNT/ZnO heterostructures were synthesized successfully by a catalytic carbothermal reduction process with CNTs as substrate and Cu as catalyst. The structure and the morphologies of as-prepared materials were characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscopy. It is found that the growth of ZnO nanowires on CNTs follows the Vapour- Liquid-Solid (VLS) mechanism. ZnO nanowires in the heterostructures have a perfect crystalline structure, while the crystalline structures of the CNTs remain unchanged. Distinctive interfaces between the ZnO nanowires and the CNTs, as well as between the ZnO nanowires and the Cu catalysts can be clearly observed. The CNTs with larger diameters favor the growth of ZnO nanowires in high density. The shapes of ZnO materials on the CNT substrate change from nanowires, to nanoparticles, and finally to nanorods as the deposition temperature increases. The photoluminescence properties of CNT/ZnO heterostructures are different from those of ZnO nanowires and CNTs that are present separately, and exhibit higher intensity in the blue band than in the ultraviolet band at room temperature.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2007年第3期206-212,共7页 New Carbon Materials
基金 教育部新世纪优秀人才基金项目(NCET-04-0274) 辽宁省杰出青年人才基金(3040009)~~
关键词 纳米碳管 氧化锌 异质结构 复合材料 发光性质 CNTs ZnO Heterostructure Composite Phototuminescence
  • 相关文献

参考文献21

  • 1Qian D,Dickey E C,Andrews R,etal.Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J].Appl Phys Lett,2000,76:2868-2870.
  • 2Tans S J,Verschueren A R M,Dekker C.Room-temperature transistor based on a single carbon nanotube[J].Nature,1998,393:49-52.
  • 3Riggs J E,Walker D B,Carroll D L,et al.Optical limiting properties of suspended and solubilized carbon nanotubes[J].J Phys Chem B,2000,104:7071-7076.
  • 4Fullam S,Cottell D,Rensmo H,et al.Carbon nanotube templated self-assembly and thermal processing of gold nanowires[J].Adv Mater,2000,12:1430-1432.
  • 5Sun Y P,Huang W J,Lin Y,et al.Soluble dendron-functionalized carbon nanotubes:preparation,characterization,and properties[J].Chem Mater,2001,1:2864-2869.
  • 6Qiu J S,Zhang H Z,Liang C H,et al.Co/CNF catalysts tailored by controllingthe deposition of metal colloids onto CNFs:preparation and catalytic properties[J].Chem Eur J,2005,12:2147-2151.
  • 7Li W Z,Liang C H,Qiu J S,et al.Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell[J].Carbon,2002,40:787-803.
  • 8Han W Q,Zettl Z.Coating single-walled carbon naotubes with Tin oxide[J].Nano Lett,2003,3:681-683.
  • 9Ye J S,Cui H F,Liu X,et al.Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors[J].Small,2005,1(5):560-565.
  • 10Fu L,Liu Z,Liu Y,et al.Beaded cobalt oxide nanoparticles along carbon nanotubes:towards more highly integrated electronic devices[J].Adv Mater,2005,17:217-221.

同被引文献91

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部