期刊文献+

基于混合遗传算法的电弧炉终点目标温度预报模型 被引量:7

Predictive Model for End Aim Temperature of Arc Furnace Based on Hybrid Genetic Algorithm
下载PDF
导出
摘要 BP(Baek Propagation)算法和遗传算法相结合的混合训练方法步骤为:首先用遗传算法定位出一个较好的搜索空间,然后采用BP算法在这个小的解空间中搜索出最优解。分别用遗传算法和混合遗传算法训练100 t电弧炉终点温度神经网络预报模型。仿真结果表明:混合遗传算法有更快的收敛速度和更高的预报命中率。当目标温度的精度范围为±2℃、±4℃、±6℃和±8℃时,BP算法的温度命中率分别为75%、82%、86%和92%,混合遗传算法的温度命中率分别为80%、88%、90%和96%。 BP (Back Propagation) algorithm and genetic algorithm are combined into hybrid genetic algorithm of which the algorithm steps are first to locate a favorable searching region by genetic algorithm, then to search optimal coefficients in the located region by BP algorithm. An 100 t arc furnace end aim temperature neural network predictive model is trained respectively by genetic algorithm and hybrid genetic algorithm in this paper. The simulation results show that the hybrid genetic algorithm has faster convergence speed and higher predictive precision, as aim temperature precision is ± 2 ℃, ± 4 ℃, ± 6 ℃ and ± 8 ℃, the percentage of hits for aim temperature by standard genetic algorithm is respectively 75%, 82%, 86% and 92% while that by hybrid genetic algorithm is respectively 80% ,88% ,90% and 96%.
出处 《特殊钢》 北大核心 2007年第5期22-24,共3页 Special Steel
关键词 混合遗传算法 神经网络 预报模型 电弧炉 终点目标温度 Hybrid Genetic Mgorithm, Neural Network, Predictive Model, Arc Furnace, End Aim Temperature
  • 相关文献

参考文献4

二级参考文献10

  • 1张际先 宓霞.神经网络及其在工程中的应用[M].北京:机械工业出版社,1998..
  • 2陈来九(Chen Laijiu).热工过程自动调节原理和应用(The theory and applications o f thermal process automation)[R]. 东南大学动力系资料(Data of Southeast Universit y Dept. of Power Engineering),1997,296-300.
  • 3Arabs J,Michalewicz Z,Mulawake J. GAVAPS-a genetic algorithms with varying population size[R]. The First IEEE Conference on Evolutionary Compution,Orland o,Florida,1994.
  • 4Srinivas M,Patnail L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans. Syst. ,Man, and Cybern. , 1994,24(4):656-6 67.
  • 5Hesser J,Manner R. Towards an optimal mutation probability for genetic algo rithms[R]. Proc 1st Conf on PPSN. 1990 .
  • 6Hajela P,Lin C L. Genetic search strategies in multicritrion optimal des ign[J]. Struct Optimization,1992,(4):99-107.
  • 7艾立群.人工神经网络在钢铁工业中的应用[J].钢铁研究学报,1997,9(4):60-63. 被引量:23
  • 8刘镇,姜学智,李东海.PID 控制器参数整定方法综述[J].电力系统自动化,1997,21(8):79-83. 被引量:58
  • 9曹一家,程时杰.进化算法在工程应用中的若干实用技术[J].电力系统自动化,2001,25(1):62-65. 被引量:7
  • 10石立宝,徐国禹.一种求解电网多目标模糊优化运行的自适应进化规划算法[J].中国电机工程学报,2001,21(3):53-57. 被引量:30

共引文献114

同被引文献82

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部