摘要
<正>在文献[1]中,Ringel定义了Finitary环A上的Hall代数(?)(A).它是以{u_[M]}[M]为基的自由Abel群,其中[M]表示有限A模M的同构类,(?)(A)的定义如下:u_[N_1]×u_[N_2]=sum from [M] ((F_(N_1)~M)×(N_2)×u_[M])由于A是Finitary环,上式右端是有限和.这里F_(N_1N_2)~M是M的适合L(?)N_2且M/L(?)N_1的子模L的个数.Hall代数(?)(A)是有单位元1=u_[0]的结合环.为简便,总假定A是有限域k上的有限维代数.所有的有限A模构成的子范畴记为mod-A.由文献[1~3]可知,Dynkin型或仿射型遗传代数的Hall代数与相应的Kac-Moody Lie代数及其量子包络代数均有深刻的内在联系,而Hall多项式在1处的赋值恰好给出了对应Lie代数的结构系数.在文献[2]中Ringel猜测:任意有限表示型k-代数总存在Hall多项式.Ringel证明了表示直向代数有Hall多项式.Guo等人证明了mod-A中没有短圈的代数A有Hall多项式.在这篇短文中,我们证明了mod_pA中没有短链的有限表示型自入射代数A存在Hall多项式.
出处
《科学通报》
EI
CAS
CSCD
北大核心
1997年第9期918-921,共4页
Chinese Science Bulletin