期刊文献+

非线性系统定阶的神经网络方法

System order determination using radial basis function neural networks
原文传递
导出
摘要 前馈型神经网应用于非线性系统辨识的一个问题是确定系统阶次。采用前馈神经网进行非线性系统定阶与神经网的推广性问题密切相关。OLS算法是构筑径向基神经网的一种学习算法,但是采用OLS算法构筑神经网存在推广性问题。ROLS算法将OLS算法与正则化(regularization)方法相结合,以提高算法的推广能力。本文将基于径向基网的ROLS算法应用于非线性系统定阶。本文对提出的方法进行了仿真研究,结果验证了方法的有效性。 System order determination is an important problem for nonlinear system identification using feedforward neural networks. Nonlinear system model order determinatin using feedforward neural networks is closely related to the generalization of the neural networks. Although OLS algrorithm has been proposed as an good process to construct radial baiss function neural networks, the network constructed by OLS often has poor generalization . ROLS algorithm is, therefore, proposed to combine OLS algorithm with regularization to enhance network generalization. An approach based on ROLS learning algorithm for radial basis function networks is proposed for nonlinear system model order determination. This approach is demonstrated in simulation .
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 1997年第3期55-58,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家攀登计划A项目
关键词 神经网络 ROLS算法 非线性系统 系统辨识 定阶 neural networks radial basis function neural networks ROLS algorithm nonlinear dynamical system identification
  • 相关文献

参考文献1

  • 1Chen S,IEEE Trans Neural Netw,1991年,2卷,2期,837页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部