摘要
前馈型神经网应用于非线性系统辨识的一个问题是确定系统阶次。采用前馈神经网进行非线性系统定阶与神经网的推广性问题密切相关。OLS算法是构筑径向基神经网的一种学习算法,但是采用OLS算法构筑神经网存在推广性问题。ROLS算法将OLS算法与正则化(regularization)方法相结合,以提高算法的推广能力。本文将基于径向基网的ROLS算法应用于非线性系统定阶。本文对提出的方法进行了仿真研究,结果验证了方法的有效性。
System order determination is an important problem for nonlinear system identification using feedforward neural networks. Nonlinear system model order determinatin using feedforward neural networks is closely related to the generalization of the neural networks. Although OLS algrorithm has been proposed as an good process to construct radial baiss function neural networks, the network constructed by OLS often has poor generalization . ROLS algorithm is, therefore, proposed to combine OLS algorithm with regularization to enhance network generalization. An approach based on ROLS learning algorithm for radial basis function networks is proposed for nonlinear system model order determination. This approach is demonstrated in simulation .
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1997年第3期55-58,共4页
Journal of Tsinghua University(Science and Technology)
基金
国家攀登计划A项目
关键词
神经网络
ROLS算法
非线性系统
系统辨识
定阶
neural networks
radial basis function neural networks
ROLS algorithm
nonlinear dynamical system identification