期刊文献+

根据蛋白质互作网络预测乳腺癌相关蛋白质的细致功能 被引量:2

Finding finer functions for proteins related to breast cancer based on protein interaction network
下载PDF
导出
摘要 乳腺癌是最为常见的恶性肿瘤之一。已有的关于乳腺癌相关蛋白质的功能注释比较宽泛,制约了乳腺癌的后续研究工作。对于已知部分功能的乳腺癌相关蛋白质,提出了一种结合Gene Ontology功能先验知识和蛋白质互作的方法,通过构建功能特异的局部相互作用网络来预测乳腺癌相关蛋白质的细致功能。结果显示该方法能够以很高的精确率为乳腺癌相关蛋白质预测更为精细的功能。预测的相关蛋白质的功能对于指导实验研究乳腺癌的分子机制具有重要的价值。 Breast cancer is one of the most common malignant tumours. However, the existing functional knowledge about the proteins related to the breast cancer is too general to promote the following study. To find their finer functions, we suggest using the function-specific interaction sub-networks by integrating the functional knowledge of Gene Ontology and the protein-protein interaction network. The results show that the proposed approach is able to reliably find finer functions for these proteins with high precision. The predicted finer functions are highly valuable for guiding the follow-up wet-lab research to study the molecular mechanism of breast cancer.
出处 《遗传》 CAS CSCD 北大核心 2007年第9期1061-1066,共6页 Hereditas(Beijing)
基金 国家自然科学基金(编号:30370388 30670539)项目资助~~
关键词 乳腺癌 蛋白质功能 预测 互作网络 基因本体 breast cancer protein function prediction interaction network gene ontology
  • 相关文献

参考文献20

  • 1George RA,Liu JY,Feng LL,Bryson-Richardson RJ,Fatkin D,Wouters MA.Analysis of protein sequence and interaction data for candidate disease gene prediction.Nucleic Acids Res,2006,34(19):e130.
  • 2Sjoblom T,Jones S,Wood LD,Parsons DW,Lin J,Barber TD,Mandelker D,Leary RJ,Ptak J,Silliman N,Szabo S,Buckhaults P,Farrell C,Meeh P,Markowitz SD,Willis J,Dawson D,Willson JK,Gazdar AF,Hartigan J,Wu L,Liu C,Parmigiani G,Park BH,Bachman KE,Papadopoulos N,Vogelstein B,Kinzler KW,Velculescu VE.The consensus coding sequences of human breast and colorectal cancers.Science,2006,314(5797):268-274.
  • 3Tu K,Yu H,Guo Z,Li X.Learnability-based further prediction of gene functions in gene ontology.Genomics,2004,84(6):922-928.
  • 4朱明珠,郭政,李霞,刘帅,李彦辉,高磊.基因功能预测问题中的样本不平衡处理[J].中国生物医学工程学报,2006,25(2):158-162. 被引量:5
  • 5Mishra GR,Suresh M,Kumaran K,Kannabiran N,Suresh S,Bala P,Shivakumar K,Anuradha N,Reddy R,Raghavan TM,Menon S,Hanumanthu G,Gupta M,Upendran S,Gupta S,Mahesh M,Jacob B,Mathew P,Chatterjee P,Arun KS,Sharma S,Chandrika KN,Deshpande N,Palvankar K,Raghavnath R,Krishnakanth R,Karathia H,Rekha B,Nayak R,Vishnupriya G,Kumar HG,Nagini M,Kumar GS,Jose R,Deepthi P,Mohan SS,Gandhi TK,Harsha HC,Deshpande KS,Sarker M,Prasad TS,Pandey A.Human protein reference database-2006 update.Nucleic Acids Res,2006,34(Database issue):D411-414.
  • 6Ashburner M,Ball CA,Blake JA,Botstein D,Butler H,Cherry JM,Davis AP,Dolinski K,Dwight SS,Eppig JT,Harris MA,Hill DP,Issel-Tarver L,Kasarskis A,Lewis S,Matese JC,Richardson JE,Ringwald M,Rubin GM,Sherlock G.Gene ontology:tool for the unification of biology.The gene ontology consortium.Nat Genet,2000,25(1):25-29.
  • 7O'Brien KP,Remm M,Sonnhammer EL.Inparanoid:a comprehensive database of eukaryotic orthologs.Nucleic Acids Res,2005,33(Database issue):D476-480.
  • 8Hamosh A,Scott AF,Amberger JS,Bocchini CA,McKusick VA.Online mendelian inheritance in man(OMIM),a knowledgebase of human genes and genetic disorders.Nucleic Acids Res,2005,33(Database issue):D514-517.
  • 9Yan Y,Spieker RS,Kim M,Stoeger SM,Cowan KH.BRCA1-mediated G2/M cell cycle arrest requires ERK 1/2 kinase activation.Oncogene,2005,24(20):3285-3296.
  • 10Larocque JR,Jaklevic BR,Su TT,Sekelsky J.Drosophila ATR in double-strand break repair.Genetics,2006,175(3):1023-1033.

二级参考文献43

  • 1俞晓晶,林建成,石铁流,李亦学.一种基于结构域的蛋白质功能分类预测新方法[J].科学通报,2004,49(20):2072-2077. 被引量:2
  • 2孙景春,徐晋麟,李亦学,石铁流.大规模蛋白质相互作用数据的分析与应用[J].科学通报,2005,50(19):2055-2060. 被引量:11
  • 3Zhu T.Global analysis of gene expression using GeneChip microarrays[J].Curr Opin Plant Bio1.2003,6(5):418-425.
  • 4Guo Z,Zhang T,Li X,et al.Towards precise classification of cancers based on robust gene functional expression profiles[J].BMC Bioinformatics,2005,6(1):58.
  • 5Tu K,Yu H,Guo Z,et al.Learnability-based further prediction of gene functions in Gene Ontology[J].Genomics,2004,922-928.
  • 6Chang E,Goh K,Cheng K.T.SVM binary classifier ensembles for multi-class image classification[C].In ACM International Conference on Information and Knowledgment Management (CIKM).Atlanta,2001.395-402.
  • 7Mateos A,Dopazo J,Jansen R,et al.Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons[J].Genome Res.2002,12(11):1703-1715.
  • 8Fawcett T,Provost F.Combining Data Mining and Machine Learning for Effective User Profiling[C].In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland,1996.126-133.
  • 9Ling C,Li C.Data mining for direct marketing problems and solutions[C].In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining.New York,1998.73-79.
  • 10Kubat M,Matwin S.Addressing the curse of imbalanced training sets:one-sided selection[C].Proceedings of the 14th International Conference on Machine Learning.Nashville,Tennesse,1997.179-186.

共引文献8

同被引文献46

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部