期刊文献+

一种改进的瞬时混合语音信号盲分离算法 被引量:1

An improved algorithm for blind signal separation of instantaneous speech mixtures
下载PDF
导出
摘要 给出语音信号分离的数学模型,并确定了可分离的假设条件和分离准则.通过分析2种学习规则的步长变化对分离效果的影响,提出改进的学习规则.应用改进的学习规则实现自适应算法对语音信号的盲分离,消除步长递减过早或过晚的现象,收敛速度快,稳态性强,分离效果较好. In this paper the mathematical model of signal speech separation is established,and the separable assumption conditions and separation criteria are determined.It proposes improved learning rules of varied steps through analysis of the separation effect for two variable-length learning rules,applies the improved rules in the adaptive algorithm to realize blind separation of speech signals,and eliminates the phenomenon that the step width lapses either too late or too early,so that stability of separation signals is strong with effective separation.
出处 《大庆石油学院学报》 CAS 北大核心 2007年第4期80-83,共4页 Journal of Daqing Petroleum Institute
基金 黑龙江省教育厅科学技术研究(面上)项目(11521318)
关键词 瞬时混合 语音信号 盲分离 instantaneous mixtures speech signals blind separation
  • 相关文献

参考文献6

  • 1朱孝龙,保铮,张贤达.基于分阶段学习的盲信号分离[J].中国科学(E辑),2002,32(5):693-703. 被引量:52
  • 2AMARI S. Natural gradient works efficiently in learning[J]. Neural Computation, 1998,10(2) :251-276.
  • 3YANG H H. Serial updating rule for blind separation derived from the method of scoring. IEEE Trans Signal Processing, 1999.47 (8):2279-2285.
  • 4ALVAREZ M R. ROJAS F. PUNTONET C G, et al. A geometric ICA procedure hased on a lattice of the observation space[A]. 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003)[C], 2003, Nara, Japan : 1101 -- 1106.
  • 5ALVAREZ S C, CICHOCKI A. An iterative inversion approach to blind source separation[J]. IEEE Trans on Neural Networks. 2000,11(6):1423--1437.
  • 6李小红,王华奎,樊璟.盲信号分离的自稳定算法[J].太原理工大学学报,2004,35(4):445-447. 被引量:1

二级参考文献26

  • 1Cao X R,Liu R W. A general Approach to Blind Source Separation[J]. IEEE Trans Signal Processing, 1996,44:562-571.
  • 2Comon P. Independent Component Analysis, a new concept[J]. Signal Processing,1994,36:287-314.
  • 3Shun-ichi Amari. Natural gradient works efficiently in learning[J]. Neural Computation, 1998,10:251-276.
  • 4Cardoso J F,Laheld B. Equivariant adaptive sourve separation[J]. IEEE Trans Signal Processing, 1996,44:3017-3029.
  • 5A Edelman, T Arias,S T Smith. The geometry of altorithms with orthogonality constraints[J]. SIAM Journal on Matrix Analysis and Applications, 1998,20(2): 303-353.
  • 6Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Networks, 1999, 10(3): 626~634
  • 7Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computations, 1995, 7: 1129~1159
  • 8Karhunen J, Joutsensalo J. Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 1994, 7: 113~127
  • 9Karhunen J, Pajunen P, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neural Computing, 1998, 22: 5~20
  • 10Comon P. Independent component analysis, a new concept? Signal Processing, 1994, 36: 287~314

共引文献51

同被引文献15

  • 1Hyvrinen A,Karhunen J,Oja E.独立成分分析[M].周宗潭,董国华,徐昕,等译.北京:电子工业出版社,2007.
  • 2LeVan P,Tyvaert L,Moeller F.Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients[J].Neuroimage,2010,49(1):366.
  • 3Mehrabian A R,Lucas C.A novel numerical optimization algorithm inspired from weed colonization[J].Ecological Informatics,2006,1(4):355-366.
  • 4Roy G G,Das S,Chakraborty P,et al.Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm[J].Antennas and Propagation,IEEE Transactions on,2011,59(1):110-118.
  • 5Yang H H,Amari S.Adaptive online learning algorithms for blind separation:maximum entropy and minimum mutual information[J].Neural Computation,1997,9(7):1457-1482.
  • 6Cardoso J F,Laheld B H.Equivariant adaptive source separation[J].IEEE Transactions on Signal Processing,1996,44(12):3017
  • 7Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.
  • 8Zhang H,Shi Z,Guo C,et al.Blind source extraction for noisy mixtures by combining gaussian moments and generalized autocorrelations[J].Neural Processing Letters,2008,28(3):209-225.
  • 9Shi Z,Tan X,Jiang Z,et al.Noisy blind source separation by nonlinear autocorrelation[C]//2010 3rd International Congress on Image and Signal Processing(CISP),2010:3152-3156.
  • 10Hyvarinen A.Gaussian moments for noisy independent component analysis[J].IEEE Signal Processing Letters,1999,6(6):145-147.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部