期刊文献+

时滞非自治的捕食者一食饵系统的持续性和全局稳定性 被引量:1

Persistence and Global Stability for Delay Nonautonomous Predator-prey System
下载PDF
导出
摘要 为了研究一类没有即时负反馈控制的3种群捕食者-食饵系统的持续性和全局稳定性;在给定的条件下,利用不等式知识,证明了系统的一致持续性.并通过构造lyapunov函数,导出了该系统全局稳定性的充分条件.在Lotka-Volterra模型中,考虑了3个种群——y_1,y_2,y_3;在这里y_2,y_3是捕食者;y_1,y_2是食饵;其中y_2在捕食y_1的同时又被y_3捕食;y_3既捕食y_1,又捕食y_2. In order to study the uniform persistence and global stability of a delayed nonautonomous three specie predator-prey Lotka-Volterra system without dominating instantaneous negative feedback. In an appropriate condition, using the knowledge of not-equation, we proved the system is uniformly persistent by constructing a suitable Lyapunov function. Sufficient condition are derived form the global stability of the system. The author considered three species y1, y2, Y3 in the system which has two predator y2, y3 and two preys Y1,Y2; Y2 not only is the predator to y1 but also is the prey to Y3, y1 is the prey to y3 too.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2007年第8期874-877,896,共5页 Journal of Beijing University of Technology
关键词 捕食者-食饵 李雅普诺夫方法 数学模型 时滞 负反馈 predator-prey Lyapunov methods mathematical models delay negative feedback
  • 相关文献

参考文献8

  • 1ZENG G Z,CHEN L S,CHEN J F.Persistence and periodic orbits for two-species nonautonomous diffusion Lotka-Vloterra models[J].Mathl Comput Modeling,1994,20:69-80.
  • 2ZHANGJ G,CHEN L S,CHEN X D.Perisistence and global stability for two-species nonautonomous competition Lotka-Vloterra system with time delay[J].Nonlinear Anal,1999,37:1019-1028.
  • 3ZHANG Zheng-qiu,WANG Zhi-cheng.Periodic solutions for a two-species nonautonomous nonautonomous competition Lotka-Vloterra system with time delay[J].Math Anal Appl,2002,265:38-48.
  • 4HOFBAUER J,SIGMUND K.The theory of evolution and dynamical systems[M].New York:Cambridge Univ Press,1988.
  • 5KUANG Y,SMITH H L.Global stability for infinite delay Lotka-Volterra type systems[J].Differential Equations,1993,103:221-246.
  • 6KUANG Y.Global stability in delay differential systems without dominating instantaneous negative feedbacks[J].Differential Equations,1995,119:503-532.
  • 7WANG W,MA Z.Harmless delay for uniform persistence[J].Math Anal Appl,1991,158:256-268.
  • 8GOPALSAMY K.Stability and oscillations in delay differential equations of population dynamics[M].Dordrecht:Kluwer Academic,1992.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部