期刊文献+

非线性最优控制系统的保辛摄动近似求解 被引量:4

Computation of Nonlinear Optimal Control via Symplectic Conservative Perturbation Method
下载PDF
导出
摘要 非线性两端边值问题是在非线性最优控制计算中遇到的主要困难,通常将其转化为线性两端边值问题的迭代求解.因此,很有必要发展求解线性时变非齐次方程的两端边值问题的精确、高效算法.本文通过引入区段混合能的概念,将问题转化为区段的混合能矩阵及向量的求解,进一步给出了它们的保辛摄动算法.该算法具有很强的并行性,高效而精确.本文还指出经典的Riccati变换方法是该方法的一个特例.数值算例验证了本文方法的有效性. The nonlinear two-point boundary-value problem (TPBVP) poses the major difficulty in the computation of nonlinear optimal control systems, which is usually solved through iteration of the corresponding linearization TPBVP. Therefore, it is necessary to develop accurate and efficient algorithms for TPBVPs of linear time varying systems. By introducing the concept of interval mixed energy, the nonlinear TPBVP can be solved by converting the interval mixed energy matrices and vectors. And the classical Riccati transformation can be regarded as a special case of the interval mixed energy method. Then, an symplectic conservative and strongly parallel perturbation algo: rithm has been presented. Numerical results demonstrate its effectiveness.
出处 《自动化学报》 EI CSCD 北大核心 2007年第9期1004-1008,共5页 Acta Automatica Sinica
基金 国家重点基金(10632030) 国家重点基础研究专项经费资助项目(2005CB321704)资助~~
关键词 方法的有效性.非线性两端边值问题 非齐次Riccati变换 变系数非线性矩阵 RICCATI方程 区段混合能保辛摄动 并行运算 Nonlinear two-point boundary-value problem, inhomogenous Riccati transformation, nonlinear matrix Riccati equation with variable coefficients, interval mixed energy, symplectic conservative perturbation, parallel arithmetic
  • 相关文献

参考文献9

  • 1Sage A P,White C C.Optimum Systems Control.New Jersey:Prentice-Hall,1977
  • 2Bryson A E,Ho Y C.Applied Optimal Control.New York:Hemisphere Publishing Corporation,1975
  • 3Kirk D E.Optimal Control Theory.New Jersey:Prentice-Hall,1970
  • 4Schley C H,Lee I.Optimal control computation by the Newton-Raphson method and the Riccati transformation.IEEE Transactions on Automatic Control,1967,12(2):139-144
  • 5Betts J T.Survey of numerical methods for trajectory optimization.Journal of Guidance,Control,and Dynamics,1998,21(2):193-207
  • 6Holsapple R,Venkataraman R,Doman D.A modified simple shooting method for solving twopoint boundary-value problems.In:Proceedings of IEEE Aerospace Conference.IEEE,2003.6:2783-2790
  • 7钟万勰.分析结构力学与有限元[J].动力学与控制学报,2004,2(4):1-8. 被引量:26
  • 8Kenney C S,Leipnik R B.Numerical integration of differential matrix Riccati equation.IEEE Transactions on Automatic Control,1985,30(10):962-970
  • 9钟万勰,姚征.时间有限元与保辛[J].机械强度,2005,27(2):178-183. 被引量:30

二级参考文献7

  • 1钟万勰.分析结构力学与有限元[J].动力学与控制学报,2004,2(4):1-8. 被引量:26
  • 2钟万勰,吴志刚,高强.广义卡尔曼-布西滤波算法识别系统参数[J].动力学与控制学报,2004,2(1):1-7. 被引量:2
  • 3[1]Goldstein H.Classical mechanics.2nd ed.London:AddisonWesley,1980
  • 4[4]Whittaker ET.A treatise on the analytical dynamics.4th ed.Cambridge:Cambridge Univ Press,1952
  • 5冯康 秦孟兆.Hamilton体系的辛计算格式[M].杭州:浙江科技出版社,2004..
  • 6Press W H, Teukolsky S A, Vetterling W T,et al. Numerical Recipes in C. New York:Cambridge Univ. Press, 1992.
  • 7Zienkiewicz O C,Taylor R. The finite element method. 5-th ed. ,New York: McGraw-Hill, 2000.

共引文献47

同被引文献24

  • 1崔平远,尚海滨,栾恩杰.星际小推力转移任务发射机会的快速搜索方法[J].宇航学报,2008,29(1):40-45. 被引量:6
  • 2王飞跃.用二次最优控制推导Kalman滤波器和最优插值器[J].浙江大学学报(自然科学版),1989,23(2):193-204. 被引量:1
  • 3Sage A P, White C C. Optimum Systems Control[ M]. New Jersey: Prentice-Hall, 1977.
  • 4Bryson A E, Ho Y C. Applied Optimal Control[ M ]. New York: Hemisphere Publishing Corporation, 1975.
  • 5Schley C H, Lee I. Optimal control computation by the Newton-Raphson method and the Riccati transformation[J]. IEEE Transactions on Automatic Control, 1967, 12(2) :139-144.
  • 6Beeler S C, Tran H T, Banks H T. Feedback control methodologies for nonlinear systems [ J]. Journal of Optimization Theory and Applications, 2000, 107( 1 ) : 1-33.
  • 7Nedeljkovic N. New algorithms for unconstrained nonlinear optimal control problems [ J ]. IEEE Transactions on Automatic Control, 1981, 26(4) : 868-884.
  • 8Benson D A, Huntington G T, Thorvaldsen T P, Rao A V. Direct trajectory optimization and costate estimation via an orthogonal collocation method [J ]. Journal of Guidance Control and Dynamics, 2006, 29(6) 1435-1439.
  • 9Badakhshan K P, Kamyad A V. Numerical solution of nonlinear optimal control problems u- sing nonlinear programming [J ]. Applied Mathematics and Computation, 2007, 187 ( 2 ) : 1511-1519.
  • 10Arnold V I. Mathematical Methods of Classical Mechanics[ M ]. New York: Springer-Verlag, 1989.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部