期刊文献+

基于改进正则化方法的SAR图像区域特征提取 被引量:1

Region Feature Extraction Based on Improved Regularization Method in SAR Image
下载PDF
导出
摘要 合成孔径雷达(SAR)图像上的各种噪声削弱了目标、阴影等感兴趣区域(region of interest,ROI)的细节特征,影响了后续的目标检测、分类和识别等应用。传统的正则化方法能够增强SAR图像的目标特征,但是运算量过大,实时性不好。提出一种改进的正则化方法,有效地提高了SAR图像区域特征提取的速度和精度。理论上证明,降质算子的优化可以使运算量由O(M3N3)降到O(MN),同时保留了区域特征增强的能力。利用MSTAR数据库中实测的SAR图像进行算法验证,实验结果表明该方法能够大幅度提高目标杂波比,有效抑制感兴趣区域内的噪声,从而更精确地把目标和阴影等区域从背景杂波中提取出来。 The noise existed in Synthetic Aperture Radar (SAR) image weakens the detailed features of region of interest (ROI) such as target and shadow. It also leads to the serious performance reduction of subsequent target detection, classification and recognition. The traditional regularization method could enhance target features in SAR image; however, the high computation complexity limits the real-time application of it. An improved regularization method is introduced, which increases both speed and precision of region feature extraction for SAR image significantly. It is theoretically proved that, by optimizing SAR projection operator, computation complexity could be reduced from O(M^3N^3) to O(MN) without ability losing of the region-based feature enhancement. MSTAR SAR image data is employed for algorithm experiment. The result shows that our method can increase target-to-clutter ratio significantly while restraining the noise in ROI, and then extract target and shadow from background clutters in SAR image more accurately.
出处 《遥感技术与应用》 CSCD 2007年第4期549-554,共6页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(40601058)
关键词 SAR图像 正则化 区域特征提取 特征增强 SAR image, Regularization, Region Feature Extraction, Feature Enhance
  • 相关文献

参考文献5

二级参考文献16

  • 1G.格罗布 C.F.万罗安.矩阵计算[M].大连理工大学出版社,1988..
  • 2SimonHaykin.自适应滤波器原理(第三版)[M].电子工业出版社,1998..
  • 3Cetin Mujdat, Karl W C. Feature-Enhanced Synthetic Aperture Radar Image Formation Based on Non-Quadratic Regularization [ J ]. IEEE Trans. on Image Processing,2001,10(4) :623 - 631.
  • 4Cetin Mujdat,Karl W C. A Statistical Topographic Approach to Synthetic Aperture Radar Image Reconstruction[M]. Santa Barbara,CA, 1997(10): 845-858.
  • 5Donoho D L. Sparse Components of Images and Optical Atomic Decompositions[EB/OL]. http://www. stat. Stanford. edu/,1998.
  • 6Cetin Mujdat, Karl W C, Castanon D A. Evaluation of a Regularized SAR Imaging Technique Based on Recognition-Oriented Features [J]. SPIE,2000,4053(4):40-51.
  • 7J. Wissinger, R. Washburn, et ai. Search Algorithm for Model-based SAR ATR. Proc SPIE, vol. 2757, 1996.
  • 8Robert A. Weisenseel, W. Clem Karl, et al. Markov random field segmentation methods for SAR target chips.Proc SPIE, vol. 3721, 1999.
  • 9Mijdat Cretin, William Clem Karl. Feature-Enhanced Synthetic Aperture Radar Image Formation Based on Nonquadratic Regularization. IEEE. Trans. Image Processing, vol. 10, April, 2001, pp623-631.
  • 10Mossing J C, Ross T D. Evaluation of SAR ATR algorithm per formance sensitivity to MSTAR extended operating conditions[A].Proceedings of SPIE: Algorithms for Synthetic Aperture Radar Imagery V [C]. 1998,3370.554-565.

共引文献5

同被引文献12

  • 1黎新伍.基于MRF模型和EM算法的多源图像融合方法[J].传感技术学报,2006,19(2):525-529. 被引量:5
  • 2Do M N, Vetterli M. Contourlets. A Directional Multiresolution Image Representation[C]// Proc of IEEE Intet National Conference on Image Processing Rochester. NY: 2002: 357- 360.
  • 3Duncan D Y. Po and Minh N. Do. Directional Multiseale Modeling of ImagesUsing the Contourlet Transform[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006,15 (6) : 1610-1620.
  • 4Glenn R. Easley, Member, IEEE, Demetrio Labate, and Flavia Colonna. Shearlet Based Total Variation Diffusion for Denoising[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING. 2009. 2, 18(2) :260-268.
  • 5DO M N,Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation [J]. IEEE Trans. Image Processing. 2005: 1-16.
  • 6Bamberger R. Smith M J. A Filter Bank for the Directional Decomposition of Image: Theory and Design[J ].IEEE Trans. Signal Processing, 1992,40 (4) : 882-893.
  • 7匡纲要,高贵,蒋咏梅.合成孔径雷达[M].长沙:国防科技大学出版社.2007:9-11.
  • 8LEE J S. Speckle Suppression and Analysis for Synthetic Aperture Radar Image[J] . Opt. Eng , 1986 , 25(5) : 636-643.
  • 9KUAN D T, SAWCHUK A A. Adaptive Restoration of Image with Speckle[J] . Acoustics. Speech and Sig. Proc, IEEE Trans. 1987 , ASSP(35): 373-383.
  • 10FROST V S, STILES J A, SHANMUGAN K S, HOLTZMAN J C. A Mode for Radar Image and Its Application to Adaptive Digital Filtering of Multiplicative Noise[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1982: 157-I65.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部