期刊文献+

PCBs的超(亚)临界水催化氧化及还原裂解 被引量:6

PCBs Treatment by Sub-Supercritical Water Catalytic Oxidation,Thermolysis and Reduction
下载PDF
导出
摘要 简要分析了多氯联苯(PCBs)的来源及其对环境构成的危害,介绍了PCBs在超(亚)临界水中的反应及其处理效果。分别从超临界水氧化、超临界水裂解及亚临界水还原3个方面阐明了超临界反应过程中PCBs降解的反应路径和降解效率,解释了共溶剂(甲醇、苯)、碱催化剂(Na2CO3、NaOH)、氧化剂(NaNO3、NaNO2)等对PCBs脱氯和分解的增效作用机理。发现在超临界水氧化与超临界水裂解条件下CH3OH对PCBs降解反应的促进机制有所不同,碱催化剂通过中和反应过程中产生的HCl生成NaCl沉淀导致体系中Cl的含量降低,从而促进脱氯反应的进行。对反应器防腐处理的经济性方面略作讨论,在总结上述研究工作的基础上提出了PCBs的超临界反应处理技术的若干研究方向。 The major sources and environmental hazards of PCBs are briefly introduced. The reaction pathways and decomposition efficiencies of PCBs in supercritical water (SCW) are reviewed in terms of supercritical water oxidation (SCWO), supercritical water thermolysis (SCWT), and subcritical water reduction (SCWR). The mechanisms of decomposition and dechlorination of PCBs on account of the action of cosolvent with methanol or benzene, alkali catalyst with sodium carbonate or sodium hydroxide and oxidant with sodium nitrate and sodium nitrite are summarized. The diffirences about the promotion mechanism of methanol to PCBs decomposition are found between SCWO and SCWT. The dechlorination reaction is accelerated due to the decrease of HCl which produce in the dechlorination process by the neutralisation of HCl with alkali catalyst. The corrosion problem of reactor and cost-effectiveness during the process of SCWO PCBs are discussed. The research trends for the future in SCWO PCBs are proposed.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2007年第9期1275-1281,共7页 Progress in Chemistry
基金 国家自然科学基金项目(No.20277010) 国家高技术发展计划(863)项目(2006AA06Z378)资助
关键词 多氯联苯 超临界水 亚临界水 氧化 裂解 还原 polychlorinated biphenyls (PCBs) supercritical water subcritical water oxidation thermolysis reduction
  • 相关文献

参考文献59

  • 1Alford-Stevens A L. Environ. Sci. Technol., 1986, 20: 1194- 1199
  • 2Schmening D C, Poster D L, Sheikhly M, et al. Environ. Sci. Technol., 1998, 32:270-275
  • 3毕新慧,徐晓白.多氯联苯的环境行为[J].化学进展,2000,12(2):152-160. 被引量:135
  • 4Buckley E H. Science, 1982, 216:520-522
  • 5Bumpus J A, Tien M, Wright D, et al. Science, 1985, 228: 1434- 1436
  • 6Hinz D C, Wai C M, Wenclawiak B W. J. Environ. Monit., 2000, 2:45-48
  • 7Anitescu G, Tavlarides L L. Ind. Eng. Chem. Res., 2002, 41: 9-21
  • 8Litten S, McChesney D J, Hamilton M C. Environ. Sci. Technol., 2003, 37:5502-5510
  • 9Dully J E, Anderson M A, Hill C G Jr, et al. Environ. Sci. Technol., 2000, 34:3199-3204
  • 10Rodrigues J L M, Maltseva O V, Tsoi T V, et al. Environ. Sci. Technol., 2001, 35:663-668

二级参考文献108

  • 1陈丛新.边坡稳定离心模型试验中离心力分布不均匀的影响[J].岩土力学,1994,15(4):39-45. 被引量:13
  • 2Thornton T D, Ladue D E, Savage P E. Phenol oxidation in supercritical water: formation of dibenzofuran,dibenzo-p-dioxin related compounds [J]. Envron Sci Technol, 1991, 25: 1507-1510.
  • 3Krajnc M, Levee J. On the kinetics of phenol oxidation in supercritical water [J], AIChE J. 1996, 42: 1977-1984.
  • 4Thornton T D, Savage P E. Phenol oxidation pathways in supercritical water [J]. Ind Eng Chem Res, 1992, 31: 2451-2456.
  • 5Gopalan S, Savage P E. Reaction mechanism for phenol oxidation in supercritical water [J]. J Phys Chem, 1994, 98: 12646-12652.
  • 6Gopalan S, Savage P E. A reaction network model for phenol oxidation in supercritical water [J]. AIChE J, 1995, 41: 1864-1873.
  • 7Li L, Chen P, Gloyna E F. Kinetic model for wet oxidation of organic compounds in subcritical and supercritical water [A]. Kiran E, Brennecke J, eds.Supercritical Fluid Engineering Science [C]. ACS Symp Ser,1993b, 514:305.
  • 8Crain N, Tebbal S, Li L, et al. Kinetics and reaction pathways of pyridine oxidation in supercritical water [J]. Ind Eng Chem Res, 1993, 32: 2259-2268.
  • 9Holgate H R, Meyer J C, Tester J W. Glucose hydrolysis and oxidation in supercritical water [J]. AIChE J, 1995, 41: 637-648.
  • 10Yang H H, Eckert C A. Homogeneous catalysis in the oxidation of p-chlrorophenol in supercritical water [J]. Ind Eng Chem Res, 1988, 27: 2009-2014.

共引文献204

同被引文献101

引证文献6

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部