摘要
对于连续时间线性二次最优控制问题,在动力学方程和价值泛函的基础上,给出其全状态下的微分方程,进而将精细时程积分法引入上述问题。其优点为,放弃了传统的差分算法,使计算过程既简便又稳定;避免了Riccati代数方程的求解;具有非常高的计算精度。通过对某飞行器控制系统的计算,充分说明了上述特色。
For the continuous-time linear quadratic optimal control problem, the differential equations in the total state space are given on the basis of the dynamic equation and the cost functional, then a precise time integration algorithm is introduced into the above problem. It has the advantages of abandonning the traditional differential algorithm, making the computation precedure brief and stable; avoiding to solve Riccati equation; and very high computational precision. The numerical example for an aircraft control system fully shows the above characteristics.
出处
《飞行力学》
CSCD
北大核心
1997年第2期47-51,共5页
Flight Dynamics
基金
国家自然科学基金
航空科学基金
关键词
精细积分法
高精度计算
飞行器
控制系统
Precise time integration algorithm High-precise computation Differential method.