摘要
结合断裂力学的概念和随机过程理论,将疲劳裂纹扩展近似为连续型马尔可夫过程.对于相应的向后Fokker-Plank方程和边界条件,采用本征函数法进行求解,以收敛的无穷级教形式表示出给定临界裂纹尺寸下疲劳扩展寿命的分布函数.对两组实验数据,应用该文的方法进行了具体计算,理论结果和实验吻和良好.
A statistica1 model is proposed for the analysis of fatigue crack propagntion, hasedon the concept of fracture mechanics and stochastic processes. The associated backward Fokker-Plank eqtation and boundary conditions are written, and the distribution of crack growth time.un-der a given crack size is obtained by using Eigenfunction method. The sought disribution function isexpred in the form of a convergent infinite series. Two illustractive examples are given for thecase of tha the crack propagation rate is Soverned by a Power law. The calculated results agree withexperforntal data.
出处
《固体力学学报》
CAS
CSCD
北大核心
1997年第2期167-172,共6页
Chinese Journal of Solid Mechanics
关键词
概率断裂力学
随机过程
疲劳裂纹扩展
probabilistic fracture mechanics, stochastic process,fatigue crack growth